广州大学学报:自然科学版
廣州大學學報:自然科學版
엄주대학학보:자연과학판
Journal og Guangzhou University:Natural Science Edition
2011年
4期
28-31
,共4页
邹汉波%陈胜洲%赵朝晖%林维明
鄒漢波%陳勝洲%趙朝暉%林維明
추한파%진성주%조조휘%림유명
甲烷三重整%镍催化剂%碱金属%碱土金属
甲烷三重整%鎳催化劑%堿金屬%堿土金屬
갑완삼중정%얼최화제%감금속%감토금속
tri-reforming of methane%nickel catalyst%alkali%alkali earth metal
考察了掺杂碱金属(Li、K)和碱土金属(Mg、Ba)的NiO/γ-Al2O3催化剂在甲烷三重整反应中的催化性能,并利用程序升温还原、程序升温脱附等手段对催化剂进行了表征.结果表明,碱金属K的掺杂能同时提高NiO/γ-Al2O3催化剂的CH4和CO2的转化率,而其他金属的掺杂仅对CO2转化有利.750℃时K—NiO/3γ-Al2O3催化剂的CH4和C02的转化率分别为86.5%和57.29%,而NiO/γ-Al2O3,催化剂的CH4和CO2的转化率仅为74.3%和10.39%.碱金属或碱土金属的掺杂增加了催化剂的总碱性中心数目,提高了催化剂对CO2的吸附能力.钾的加入有利于提高催化剂中弱结合态NiO物种的含量,稳定表面自由的NiO物种,增加催化剂上强碱中心和活性位的数量.
攷察瞭摻雜堿金屬(Li、K)和堿土金屬(Mg、Ba)的NiO/γ-Al2O3催化劑在甲烷三重整反應中的催化性能,併利用程序升溫還原、程序升溫脫附等手段對催化劑進行瞭錶徵.結果錶明,堿金屬K的摻雜能同時提高NiO/γ-Al2O3催化劑的CH4和CO2的轉化率,而其他金屬的摻雜僅對CO2轉化有利.750℃時K—NiO/3γ-Al2O3催化劑的CH4和C02的轉化率分彆為86.5%和57.29%,而NiO/γ-Al2O3,催化劑的CH4和CO2的轉化率僅為74.3%和10.39%.堿金屬或堿土金屬的摻雜增加瞭催化劑的總堿性中心數目,提高瞭催化劑對CO2的吸附能力.鉀的加入有利于提高催化劑中弱結閤態NiO物種的含量,穩定錶麵自由的NiO物種,增加催化劑上彊堿中心和活性位的數量.
고찰료참잡감금속(Li、K)화감토금속(Mg、Ba)적NiO/γ-Al2O3최화제재갑완삼중정반응중적최화성능,병이용정서승온환원、정서승온탈부등수단대최화제진행료표정.결과표명,감금속K적참잡능동시제고NiO/γ-Al2O3최화제적CH4화CO2적전화솔,이기타금속적참잡부대CO2전화유리.750℃시K—NiO/3γ-Al2O3최화제적CH4화C02적전화솔분별위86.5%화57.29%,이NiO/γ-Al2O3,최화제적CH4화CO2적전화솔부위74.3%화10.39%.감금속혹감토금속적참잡증가료최화제적총감성중심수목,제고료최화제대CO2적흡부능력.갑적가입유리우제고최화제중약결합태NiO물충적함량,은정표면자유적NiO물충,증가최화제상강감중심화활성위적수량.
The catalytic properties of a series NiO/γ-Al2O3 catalysts doped with alkali and alkaline earth metals for the tri-reforming of methane were investigated and these catalysts were characterization with temperature pro- grammed reduction (TPR) and temperature programmed desorption (TPD) techniques. It was shown that the doping of potassium improved CH4 and CO2 conversions, while the additions of other metals only benefit the con- version of CO2. At 750℃, CH4 and CO2 conversions of K-NiO/γ-Al2O3 catalyst reached 86.5% and 57.29% , and exceeded to those of NiO/γ-Al2O3 (74.3% and 10.39% ) , respectively. The doping of alkali and alkaline earth metals increased the number of total basic centers and improved the adsorption capacity of CO2. The modification of K2O increased the content of weak bonding NiO species, stabled the free NiO species and increased the numbers of strong basic centers and active sites.