激光与红外
激光與紅外
격광여홍외
LASER & INFRARED
2009年
11期
1153-1157
,共5页
可见-近红外光谱%污水%BP-神经网络%鉴定
可見-近紅外光譜%汙水%BP-神經網絡%鑒定
가견-근홍외광보%오수%BP-신경망락%감정
visual/near-infrared spectra%waste water%BP-ANN%identification
提出了一种基于可见-近红外光谱技术与BP人工神经网络(BP-ANN)算法快速进行污水类型鉴定的新方法.以FieldSpec(R)3地物光谱仪采集了4种污水样品的光谱数据,共168份,随机将其分成校正集(132份)和检验集(36份).分别采取全波段(400~2450 nm)与择取波段(400~1800 nm)两种方法建立模型进行分析.光谱经S.Golay平滑和标准归一化(SNV)处理后,以主成分分析法(PCA)降维.将降维所得的前9个主成分数据作为BP-ANN的输入变量,污水类型作为输出变量,建立3层BP-ANN鉴别模型.利用36个未知样对模型进行检验.结果表明:两类模型预测准确率均高达100%,且择取波段模型比全波段模型具有更高的预测精度.说明利用可见-近红外技术结合BP-ANN算法进行污水类型的快速、无污染鉴定是可行的,且波段筛选是优化模型的有效方法之一.
提齣瞭一種基于可見-近紅外光譜技術與BP人工神經網絡(BP-ANN)算法快速進行汙水類型鑒定的新方法.以FieldSpec(R)3地物光譜儀採集瞭4種汙水樣品的光譜數據,共168份,隨機將其分成校正集(132份)和檢驗集(36份).分彆採取全波段(400~2450 nm)與擇取波段(400~1800 nm)兩種方法建立模型進行分析.光譜經S.Golay平滑和標準歸一化(SNV)處理後,以主成分分析法(PCA)降維.將降維所得的前9箇主成分數據作為BP-ANN的輸入變量,汙水類型作為輸齣變量,建立3層BP-ANN鑒彆模型.利用36箇未知樣對模型進行檢驗.結果錶明:兩類模型預測準確率均高達100%,且擇取波段模型比全波段模型具有更高的預測精度.說明利用可見-近紅外技術結閤BP-ANN算法進行汙水類型的快速、無汙染鑒定是可行的,且波段篩選是優化模型的有效方法之一.
제출료일충기우가견-근홍외광보기술여BP인공신경망락(BP-ANN)산법쾌속진행오수류형감정적신방법.이FieldSpec(R)3지물광보의채집료4충오수양품적광보수거,공168빈,수궤장기분성교정집(132빈)화검험집(36빈).분별채취전파단(400~2450 nm)여택취파단(400~1800 nm)량충방법건립모형진행분석.광보경S.Golay평활화표준귀일화(SNV)처리후,이주성분분석법(PCA)강유.장강유소득적전9개주성분수거작위BP-ANN적수입변량,오수류형작위수출변량,건립3층BP-ANN감별모형.이용36개미지양대모형진행검험.결과표명:량류모형예측준학솔균고체100%,차택취파단모형비전파단모형구유경고적예측정도.설명이용가견-근홍외기술결합BP-ANN산법진행오수류형적쾌속、무오염감정시가행적,차파단사선시우화모형적유효방법지일.
A rapidly and pollution-free method was developed to identify the types of waste water by visible/near-infrared spectroscopy and back-propagation artificial neural network ( BP-ANN) algorithm. The spectra data of the total 168 samples were obtained by a FieldSpec (R) 3 spectrometer. All the samples were divided randomly into two groups, one with the 132 samples used as the calibrated set,and the other with the 36 samples as the validated set,and subsequently were analyzed with the whole wave band(400 ~2450 nm) and the selection wave band(400 ~ 1800 nm) models ,respectively. The spectra data were pretreated by the methods of S. Golay Smoothing and Standard Normal Variable (SNV) ,and the pretreated spectra data were analyzed with Principal Component Analysis (PCA). The anterior 9 principal components computed by PCA were used as the input variables of BP-ANN model which included one hidden layer,while the values of the types of waste water used as the output variables,and consequently the three layers BP-ANN identification model was built. The 36 unknown samples in the validated set were predicted by the ANN-BP model. The results showed that the recognition rate was 100% in such both models,and the accuracy of selection wave band model was higher than that of the whole wave band model. We suggested that it was feasible to discriminate the types of waste water used by visible / near-infrared spectroscopy and BP-ANN algorithm as a rapid and pollution-free way,and the wave band selection was a validated way to improve the precision of the identification model.