中国药学(英文版)
中國藥學(英文版)
중국약학(영문판)
JOURNAL OF CHINESE PHARMACEUTICAL SCIENCES
2006年
2期
83-91
,共9页
胡容峰%朱家壁%马凤余%许向阳%孙玉亮%梅康康%李师
鬍容峰%硃傢壁%馬鳳餘%許嚮暘%孫玉亮%梅康康%李師
호용봉%주가벽%마봉여%허향양%손옥량%매강강%리사
水飞蓟宾%缓释微球%固体分散%球晶制粒技术
水飛薊賓%緩釋微毬%固體分散%毬晶製粒技術
수비계빈%완석미구%고체분산%구정제립기술
silybin%sustained-release microsphere%solid dispersion%spherical crystallization technique
目的提高水飞蓟宾的生物利用度.方法采用固体分散载体和阻滞性高分子材料,使用固体分散与球晶制粒相结合的技术制备水飞蓟宾缓释微球.运用差示热分析及X-射线粉末衍射检测水飞蓟宾在微球中分散状态,采用扫描电子显微镜观察微球的形态、表面结构和内部结构,并对微球的特性如平均粒径、粒径分布、松密度进行评价.结果研制微球的大小可由搅拌速度来控制,水飞蓟宾从缓释微球中的释放速度随分散剂的量的增加而增加,阻滞剂可延缓药物的释放.微球中药物的释放速度能够通过调节分散剂和阻滞剂的比例来控制.X射线衍射与差示热分析结果表明:水飞蓟宾以无定型高度分散在微球中.在40℃,相对湿度75%条件下,加速三个月,药物释放与含量不会改变.结论水飞蓟宾缓释微球可通过采用固体分散与球晶制粒相结合的技术一步制成.该制备过程简便、重现性好、成本低,是水不溶性药物制备缓释微球的有效方法.
目的提高水飛薊賓的生物利用度.方法採用固體分散載體和阻滯性高分子材料,使用固體分散與毬晶製粒相結閤的技術製備水飛薊賓緩釋微毬.運用差示熱分析及X-射線粉末衍射檢測水飛薊賓在微毬中分散狀態,採用掃描電子顯微鏡觀察微毬的形態、錶麵結構和內部結構,併對微毬的特性如平均粒徑、粒徑分佈、鬆密度進行評價.結果研製微毬的大小可由攪拌速度來控製,水飛薊賓從緩釋微毬中的釋放速度隨分散劑的量的增加而增加,阻滯劑可延緩藥物的釋放.微毬中藥物的釋放速度能夠通過調節分散劑和阻滯劑的比例來控製.X射線衍射與差示熱分析結果錶明:水飛薊賓以無定型高度分散在微毬中.在40℃,相對濕度75%條件下,加速三箇月,藥物釋放與含量不會改變.結論水飛薊賓緩釋微毬可通過採用固體分散與毬晶製粒相結閤的技術一步製成.該製備過程簡便、重現性好、成本低,是水不溶性藥物製備緩釋微毬的有效方法.
목적제고수비계빈적생물이용도.방법채용고체분산재체화조체성고분자재료,사용고체분산여구정제립상결합적기술제비수비계빈완석미구.운용차시열분석급X-사선분말연사검측수비계빈재미구중분산상태,채용소묘전자현미경관찰미구적형태、표면결구화내부결구,병대미구적특성여평균립경、립경분포、송밀도진행평개.결과연제미구적대소가유교반속도래공제,수비계빈종완석미구중적석방속도수분산제적량적증가이증가,조체제가연완약물적석방.미구중약물적석방속도능구통과조절분산제화조체제적비례래공제.X사선연사여차시열분석결과표명:수비계빈이무정형고도분산재미구중.재40℃,상대습도75%조건하,가속삼개월,약물석방여함량불회개변.결론수비계빈완석미구가통과채용고체분산여구정제립상결합적기술일보제성.해제비과정간편、중현성호、성본저,시수불용성약물제비완석미구적유효방법.
Aim To improve the dissolution rate and bioavailability of silybin. Methods Sustained-release silybin microspheres were prepared by the spherical crystallization technique with soliddispersing and release-retarding polymers. A differential scanning calorimeter and an X-ray diffractometer were used to investigate the dispersion state of silybin in the microspheres. The shape, surface morphology, and internal structure of the microspheres were observed using a scanning electron microscope.Characterization of the microspheres, such as average diameter, size distribution and bulk density of the microspheres was investigated. Results The particle size of the microspheres was determined mainly by the agitation speed. The dissolution rate of silybin from microspheres was enhanced by increasing the amount of the dispersing agents, and sustained by the retarding agents. The release rate of microspheres was controlled by adjusting the combination ratio of the dispersing agents to the retarding agents. The results of X-ray diffraction and differential scanning calorimetry analysis indicated that silybin was highly dispersed in the microspheres in amorphous state. The release profiles and content did not change after a three-month accelerated stability test at 40 ℃ and 75% relative humidity. Conclusion Sustained-release silybin microspheres with a solid dispersion structure were prepared successfully in one step by a spherical crystallization technique combined with solid dispersion technique. The preparation process is simple, reproducible and inexpensive. The method is efficient for designing sustained-release microspheres with water-insoluble drugs.