工程数学学报
工程數學學報
공정수학학보
CHINESE JOURNAL OF ENGINEERING MATHEMATICS
2011年
4期
537-543
,共7页
模糊T-S模型%RBF神经网络%非线性系统%不确定性%时延
模糊T-S模型%RBF神經網絡%非線性繫統%不確定性%時延
모호T-S모형%RBF신경망락%비선성계통%불학정성%시연
fuzzy T-S model%RBF neural networks%nonlinear systems%uncertainties%time delays
本文针对含有不确定性,时延和未知系统状态的复杂非线性系统,考虑了输出反馈控制问题.应用模糊T-S模型逼近非线性系统建模,RBF神经网络作为补偿器来消除建模误差和不确定性.所设计的控制器能够使得闭环系统满足期望的H∞性能.
本文針對含有不確定性,時延和未知繫統狀態的複雜非線性繫統,攷慮瞭輸齣反饋控製問題.應用模糊T-S模型逼近非線性繫統建模,RBF神經網絡作為補償器來消除建模誤差和不確定性.所設計的控製器能夠使得閉環繫統滿足期望的H∞性能.
본문침대함유불학정성,시연화미지계통상태적복잡비선성계통,고필료수출반궤공제문제.응용모호T-S모형핍근비선성계통건모,RBF신경망락작위보상기래소제건모오차화불학정성.소설계적공제기능구사득폐배계통만족기망적H∞성능.
The output feedback control problem is considered for a class of complex nonlinear systems with time delays and unknown states, and under uncertainties. Fuzzy T-S models are used to approximate the complex nonlinear system, and RBF neural networks act as a compensator to eliminate the approximating error and the uncertainties. The controller is designed to ensure that the closed-loop system satisfies the desired H∞ performance. Simulation result demonstrates the effectiveness of the developed control scheme.