华南理工大学学报(自然科学版)
華南理工大學學報(自然科學版)
화남리공대학학보(자연과학판)
JOURNAL OF SOUTH CHINA UNIVERSITY OF TECHNOLOGY(NATURAL SCIENCE EDITION)
2007年
10期
117-123
,共7页
钟理%Chuang Karl
鐘理%Chuang Karl
종리%Chuang Karl
固体氧化物燃料电池%膜电极组装(MEA)%硫化氢%质子传导膜
固體氧化物燃料電池%膜電極組裝(MEA)%硫化氫%質子傳導膜
고체양화물연료전지%막전겁조장(MEA)%류화경%질자전도막
solid oxide fuel cell%membrane-electrode assembly%hydrogen sulfide%proton-conducting membrane
开发了一种制备纳米复合Li2SO4质子传导电解质和膜电极组装(MEA)的工艺.与传统的丝网涂布工艺不同,新的制备工艺是将阳极、阴极催化剂与纳米复合电解质同时一次压制成MEA.这就使得MEA的设计具有某些结构上的特点,由于膜厚减少和电极与电解质之间的接触良好,可以降低电解质与电极之间的欧姆电阻,提高其机械和导电性能,增加膜的质子传导性以及改善电池的性能.用电子扫描电镜(SEM)和电化学阻抗分析技术对电解质薄膜进行了表征,结果表明,纳米复合材料改善了MEA的总体性能.由于膜的致密性和不透气性,不会发生气体穿透过膜的现象.MEA在H2S环境中很稳定.电池结构为H2S,(MoS2/NiS+Ag+电解质量+淀粉)/Li2SO4+Al2O3/(NiO+Ag+电解质量+淀粉),空气、MEA厚为0.8mm、电解质组成为65% Li2SO4+35%Al2O3的单电池在680℃时产生最大功率密度为130 mW/cm2,相应的电流密度为200mW/cm2.
開髮瞭一種製備納米複閤Li2SO4質子傳導電解質和膜電極組裝(MEA)的工藝.與傳統的絲網塗佈工藝不同,新的製備工藝是將暘極、陰極催化劑與納米複閤電解質同時一次壓製成MEA.這就使得MEA的設計具有某些結構上的特點,由于膜厚減少和電極與電解質之間的接觸良好,可以降低電解質與電極之間的歐姆電阻,提高其機械和導電性能,增加膜的質子傳導性以及改善電池的性能.用電子掃描電鏡(SEM)和電化學阻抗分析技術對電解質薄膜進行瞭錶徵,結果錶明,納米複閤材料改善瞭MEA的總體性能.由于膜的緻密性和不透氣性,不會髮生氣體穿透過膜的現象.MEA在H2S環境中很穩定.電池結構為H2S,(MoS2/NiS+Ag+電解質量+澱粉)/Li2SO4+Al2O3/(NiO+Ag+電解質量+澱粉),空氣、MEA厚為0.8mm、電解質組成為65% Li2SO4+35%Al2O3的單電池在680℃時產生最大功率密度為130 mW/cm2,相應的電流密度為200mW/cm2.
개발료일충제비납미복합Li2SO4질자전도전해질화막전겁조장(MEA)적공예.여전통적사망도포공예불동,신적제비공예시장양겁、음겁최화제여납미복합전해질동시일차압제성MEA.저취사득MEA적설계구유모사결구상적특점,유우막후감소화전겁여전해질지간적접촉량호,가이강저전해질여전겁지간적구모전조,제고기궤계화도전성능,증가막적질자전도성이급개선전지적성능.용전자소묘전경(SEM)화전화학조항분석기술대전해질박막진행료표정,결과표명,납미복합재료개선료MEA적총체성능.유우막적치밀성화불투기성,불회발생기체천투과막적현상.MEA재H2S배경중흔은정.전지결구위H2S,(MoS2/NiS+Ag+전해질량+정분)/Li2SO4+Al2O3/(NiO+Ag+전해질량+정분),공기、MEA후위0.8mm、전해질조성위65% Li2SO4+35%Al2O3적단전지재680℃시산생최대공솔밀도위130 mW/cm2,상응적전류밀도위200mW/cm2.
A nano-composite Li2SO4 proton-conducting electrolyte and a new preparation procedure of membrane-electrode assembly (MEA) were developed for the electrochemical oxidation of H2S. Instead of the traditional screen-printing method, in the MEA, both the anode and cathode catalysts were simultaneously pressed to form the cell with nano-composite electrolyte. This allows the design to possess some advantageous configurations that can diminish the Ohmic resistance between the electrolyte and the electrodes, enhance the mechanical and electrical properties, and improve the performance of fuel cells due to the membrane thickness reduction and the good contact between the electrolyte and the electrodes. The electrolyte was then characterized by scanning electron microscope (SEM) and electrochemical impedance spectrum techniques. The results indicate that the nano-composite materials improve the electrolyte integrity, and that no cross-over of H2S through the improved electrolyte occurs due to its high density, good compactivity and gas-impermeability. Moreover, MEA is stable in H2S stream. For a single cell with the configuration of H2S, ( MoS2/NiS + Ag + electrolyte + starch)/ Li2SO4 +Al203/(NiO +Ag + electrolyte + starch) and air in a MEA thickness of 0.8 mm and a Li2SO4 to Al2O3 weight ratio of 65: 35, the maximum power density is about 130mW/cm2 and the corresponding current density is about 200 mA/cm2 at 680 ℃.