中华放射学杂志
中華放射學雜誌
중화방사학잡지
Chinese Journal of Radiology
2010年
9期
980-984
,共5页
苏宇征%孙斌%薛蕴菁%段青%金利新%翁得河
囌宇徵%孫斌%薛蘊菁%段青%金利新%翁得河
소우정%손빈%설온정%단청%금리신%옹득하
脑%磁共振成像%灌流
腦%磁共振成像%灌流
뇌%자공진성상%관류
Brain%Perfusion%Magnetic resonance imaging
目的 探讨脉冲动脉自旋标记(PASL)灌注技术测量正常脑白质血流量(CBF)的局限性.方法 选取31例颅脑肿瘤患者,使用3.0 T MR系统进行可一次多层采集的第2版本薄层连续饱和技术的单减影灌注定量(Q2TIPSⅡ)PASL和动态磁敏感对比(DSC)灌注成像.观察PASL和DSC-CBF图的脑灌注表现.取病灶对侧大脑半球正常脑白质区做正常脑白质测量.在PASL-CBF和DSC-CBF图上,测量近端基底节层面和远端半卵圆中心层面ROI内的脑白质信号强度值,分别对PASL-CBF和DSC-CBF图不同层面所测值进行配对t检验,并对同一层面两种技术所测值进行Pearson直线相关性分析.结果 在远端层面的深部白质区域,PASL-CBF图显示为黑色的灌注缺失,而DSC-CBF图相应层面末见白质血流的缺失,仍显示为蓝色的低血流区.远端深部白质灌注信号随反转时间的延长而明显改善,但仍可见到黑色的信号缺失区;而灰质灌注信号随着反转时间的延长却稍有下降.远端层面的正常脑白质平均PASL-CBF为(-22.1±55.5)ml·100 g-1·min-1,近端层面脑白质为(89.5±45.5)ml·100 g-1·min-1,两者差异有统计学意义(t=-9.512,P<0.05),而远端[(62.8±29.9)ml·100 g-1·min-1]和近端[(57.1±29.6)ml·100 g-1·min-1]层面脑白质的DSC-CBF差异无统计学意义(t=-1.607,P>0.05);两种技术测得的近端、远端层面脑白质信号强度无相关性(r值分别为-0.234、0.093,P值均>0.05).结论 PASL技术在定量测量正常脑白质血流量时仍存在不足,定量的准确性受到ASL技术自身的局限性和所选择不同参数的影响.
目的 探討脈遲動脈自鏇標記(PASL)灌註技術測量正常腦白質血流量(CBF)的跼限性.方法 選取31例顱腦腫瘤患者,使用3.0 T MR繫統進行可一次多層採集的第2版本薄層連續飽和技術的單減影灌註定量(Q2TIPSⅡ)PASL和動態磁敏感對比(DSC)灌註成像.觀察PASL和DSC-CBF圖的腦灌註錶現.取病竈對側大腦半毬正常腦白質區做正常腦白質測量.在PASL-CBF和DSC-CBF圖上,測量近耑基底節層麵和遠耑半卵圓中心層麵ROI內的腦白質信號彊度值,分彆對PASL-CBF和DSC-CBF圖不同層麵所測值進行配對t檢驗,併對同一層麵兩種技術所測值進行Pearson直線相關性分析.結果 在遠耑層麵的深部白質區域,PASL-CBF圖顯示為黑色的灌註缺失,而DSC-CBF圖相應層麵末見白質血流的缺失,仍顯示為藍色的低血流區.遠耑深部白質灌註信號隨反轉時間的延長而明顯改善,但仍可見到黑色的信號缺失區;而灰質灌註信號隨著反轉時間的延長卻稍有下降.遠耑層麵的正常腦白質平均PASL-CBF為(-22.1±55.5)ml·100 g-1·min-1,近耑層麵腦白質為(89.5±45.5)ml·100 g-1·min-1,兩者差異有統計學意義(t=-9.512,P<0.05),而遠耑[(62.8±29.9)ml·100 g-1·min-1]和近耑[(57.1±29.6)ml·100 g-1·min-1]層麵腦白質的DSC-CBF差異無統計學意義(t=-1.607,P>0.05);兩種技術測得的近耑、遠耑層麵腦白質信號彊度無相關性(r值分彆為-0.234、0.093,P值均>0.05).結論 PASL技術在定量測量正常腦白質血流量時仍存在不足,定量的準確性受到ASL技術自身的跼限性和所選擇不同參數的影響.
목적 탐토맥충동맥자선표기(PASL)관주기술측량정상뇌백질혈류량(CBF)적국한성.방법 선취31례로뇌종류환자,사용3.0 T MR계통진행가일차다층채집적제2판본박층련속포화기술적단감영관주정량(Q2TIPSⅡ)PASL화동태자민감대비(DSC)관주성상.관찰PASL화DSC-CBF도적뇌관주표현.취병조대측대뇌반구정상뇌백질구주정상뇌백질측량.재PASL-CBF화DSC-CBF도상,측량근단기저절층면화원단반란원중심층면ROI내적뇌백질신호강도치,분별대PASL-CBF화DSC-CBF도불동층면소측치진행배대t검험,병대동일층면량충기술소측치진행Pearson직선상관성분석.결과 재원단층면적심부백질구역,PASL-CBF도현시위흑색적관주결실,이DSC-CBF도상응층면말견백질혈류적결실,잉현시위람색적저혈류구.원단심부백질관주신호수반전시간적연장이명현개선,단잉가견도흑색적신호결실구;이회질관주신호수착반전시간적연장각초유하강.원단층면적정상뇌백질평균PASL-CBF위(-22.1±55.5)ml·100 g-1·min-1,근단층면뇌백질위(89.5±45.5)ml·100 g-1·min-1,량자차이유통계학의의(t=-9.512,P<0.05),이원단[(62.8±29.9)ml·100 g-1·min-1]화근단[(57.1±29.6)ml·100 g-1·min-1]층면뇌백질적DSC-CBF차이무통계학의의(t=-1.607,P>0.05);량충기술측득적근단、원단층면뇌백질신호강도무상관성(r치분별위-0.234、0.093,P치균>0.05).결론 PASL기술재정량측량정상뇌백질혈류량시잉존재불족,정량적준학성수도ASL기술자신적국한성화소선택불동삼수적영향.
Objective To investigate the limitation of quantitative measurement of cerebral blood flow (CBF) of normal white matter by using a single subtraction with thin-slice TI1 periodic saturation (Q2TIPS Ⅱ ) pulsed arterial spin labeling (PASL)technique. Methods Thirty-one patients with brain tumors were examined at 3.0 T MRI system . A second version of quantitative imaging of perfusion using a single subtraction with additional thin-section periodic saturation after inversion and a time delay (Q2TIPS) technique of pulsed arterial spin labeling in the multisection mode and T2* dynamic susceptibility-weighted contrast-enhanced (T2* DSC)MR imaging were both implemented. Cerebral blood flow map obtained from PASL and DSC were reviewed. The regions of interest( ROI )were placed in the region of normal white matter contralateral to the lesion in the proximal and distal slices. In regions of interest, the signal intensity (SI)was measured from the maps of cerebral blood flow map obtained from PASL and DSC. Pair-t test was performed to determine if there were significant signal differences between proximal and distal slices. Pearson linear correlation analysis of signal intensity was performed for values from the same slices of PASL-CBF and DSC-CBF maps. Results In the deep white matter of distal slice, PASL-CBF map showed perfusion deficit while DSC-CBF map showed low CBF in the corresponding brain area. With the increased inversion time,the PASL-CBF map showed obviously improved perfusion signal in deep white matter (but still some perfusion deficit)and slightly decreased perfusion signal in grey matter. The mean signal of normal white matter measured from distal slices of PASL-CBF maps was( -22.1 ±55.5) ml· 100 g-1 · min-1 while it was (89.5 ±45.5) ml. 100 g-1 · min-1 in proximal slices. There was a significant difference of signal intensity from PASL-CBF maps between distal and proximal slices ( t = - 9. 512, P < 0. 01 =, while no difference of signal intensity between distal[ (62. 8 ± 29.9) ml · 100 g-1 · min-1] and proximal slices [(57. 1 ±29.6) ml · 100 g-1 · min-1 ]was obtained from DSC-CBF maps(t= -1.607,P>0.05). There was no significant correlation between PASL-CBF and DSC-CBF in both distal ( r = 0. 093, P > 0. 05 ) and proximal slices ( r = - 0. 234, P > 0. 05). Conclusions PASL has limitation in the accurate quantification of cerebral blood flow of normal white matter. The quantification of CBF was affected by the limitations of the technique itself and the different parameters chosen..