宇航学报
宇航學報
우항학보
JOURNAL OF ASTRONAUTICS
2010年
3期
868-874
,共7页
宋义伟%于思源%谭立英%马晶%韩琦琦%刘剑峰%杨旺
宋義偉%于思源%譚立英%馬晶%韓琦琦%劉劍峰%楊旺
송의위%우사원%담립영%마정%한기기%류검봉%양왕
激光通信%温度场%温度不均匀性%热形变%温控%RMS值
激光通信%溫度場%溫度不均勻性%熱形變%溫控%RMS值
격광통신%온도장%온도불균균성%열형변%온공%RMS치
Laser communication%Temperature distribution%Difference in temperature%Thermal deformation%Thermal control%RMS value
基于传热学基本理论,给出了潜望式激光通信终端二维转台在轨运行过程中的传热控制方程,分析了二维转台的温度场分布,得出了不同材料反射镜在轨运行过程中温度场随时间变化规律和升交点时刻的热形变分布.分析过程中二维转台外表面采取氧化处理,没有采用其他温控措施,分析结果表明,对于四种不同材料反射镜,激光通信终端在轨运行一个轨道周期的时间内,SiC材料温度波动范围最小,并且温度不均匀性也最小,因此SiC材料是潜望式激光通信终端反射镜的可选材料.对于SiC反射镜,升交点时刻俯仰轴反射镜的温度不均匀性最大,达到0.93℃.反射镜采用椭圆周上六点螺钉固定的方式时,俯仰轴反射镜面形RMS值达到2.25μm,这将对光束指向产生影响,进而影响系统性能.本文的研究内容对潜望式激光通信终端反射镜材料选择和温控措施的采取有一定参考价值.
基于傳熱學基本理論,給齣瞭潛望式激光通信終耑二維轉檯在軌運行過程中的傳熱控製方程,分析瞭二維轉檯的溫度場分佈,得齣瞭不同材料反射鏡在軌運行過程中溫度場隨時間變化規律和升交點時刻的熱形變分佈.分析過程中二維轉檯外錶麵採取氧化處理,沒有採用其他溫控措施,分析結果錶明,對于四種不同材料反射鏡,激光通信終耑在軌運行一箇軌道週期的時間內,SiC材料溫度波動範圍最小,併且溫度不均勻性也最小,因此SiC材料是潛望式激光通信終耑反射鏡的可選材料.對于SiC反射鏡,升交點時刻俯仰軸反射鏡的溫度不均勻性最大,達到0.93℃.反射鏡採用橢圓週上六點螺釘固定的方式時,俯仰軸反射鏡麵形RMS值達到2.25μm,這將對光束指嚮產生影響,進而影響繫統性能.本文的研究內容對潛望式激光通信終耑反射鏡材料選擇和溫控措施的採取有一定參攷價值.
기우전열학기본이론,급출료잠망식격광통신종단이유전태재궤운행과정중적전열공제방정,분석료이유전태적온도장분포,득출료불동재료반사경재궤운행과정중온도장수시간변화규률화승교점시각적열형변분포.분석과정중이유전태외표면채취양화처리,몰유채용기타온공조시,분석결과표명,대우사충불동재료반사경,격광통신종단재궤운행일개궤도주기적시간내,SiC재료온도파동범위최소,병차온도불균균성야최소,인차SiC재료시잠망식격광통신종단반사경적가선재료.대우SiC반사경,승교점시각부앙축반사경적온도불균균성최대,체도0.93℃.반사경채용타원주상륙점라정고정적방식시,부앙축반사경면형RMS치체도2.25μm,저장대광속지향산생영향,진이영향계통성능.본문적연구내용대잠망식격광통신종단반사경재료선택화온공조시적채취유일정삼고개치.
A thermal conduction formula for gimbals of periscopic Laser Communication Terminal(LCT) in orbit was given based on thermal conduction theory in this paper. The temperature distribution of the gimbals was analyzed. The temperature distribution variation on reflectors with different materials and thermal deformation at the time of ascending node were given. With oxidation on the surfaces of gimbals and without other thermal control, the analysis results indicated that the SiC material had the minimum temperature variety and the minimum difference in temperature over the whole reflector out of four different reflector materials in one orbit period. So SiC is usable as reflector material. The maximum value of difference in temperature was 0.93 ℃ and appeared on the elevator axis at the time of ascending node for SiC reflectors. The six-points fixing around the reflector fixed with screws was used. This difference in temperature caused the RMS value of thermal deformation over the elevator reflector reached 2.25 μm. This would influence the pointing direction of the beam and communication performance. This paper has certain reference value methods for choosing material for reflectors in periscopic LCT and thermal control.