中华放射医学与防护杂志
中華放射醫學與防護雜誌
중화방사의학여방호잡지
Chinese Journal of Radiological Medicine and Protection
2011年
3期
286-289
,共4页
齐雪松%吕慧敏%王春燕%张伟%郝述霞%苟巧%佟鹏%刘青杰%苏旭
齊雪鬆%呂慧敏%王春燕%張偉%郝述霞%茍巧%佟鵬%劉青傑%囌旭
제설송%려혜민%왕춘연%장위%학술하%구교%동붕%류청걸%소욱
γ射线%T细胞受体%剂量-效应关系%时间-效应关系%生物剂量计
γ射線%T細胞受體%劑量-效應關繫%時間-效應關繫%生物劑量計
γ사선%T세포수체%제량-효응관계%시간-효응관계%생물제량계
γ-rays%T cell receptor (TCR)%Dose-effect relationship%Time-effect relationship%Biological dosimeter
目的 初步建立T细胞受体(TCR)突变频率的剂量-效应和时间-效应模型,为探讨TCR作为估算辐射生物剂量计提供依据.方法 将10名健康成年人的外周血淋巴细胞分成两组.第1组4人(男性)的外周血淋巴细胞分别给予0、0.5、1.0、1.5、2.0、2.5、3.0、3.5、4.0和5.0 Gv γ射线照射,用于拟合剂量-效应曲线,第2组6人(男女各半)的外周血淋巴细胞给予2 Gy γ射线照射,用于拟合时间-效应曲线.用流式细胞仪进行计数检测,计算TCR基因突变频率.结果 γ射线照射诱发TCR MF的辐射剂量-效应曲线,拟合最佳的模型为二次方程模型:TCR MF=92.14+22·61D2(R2adj=0.65);γ射线照射诱发TCR MF的辐射时间-效应曲线,拟合最佳的模型为二次多项式方程模型:TCR MF=3.74+743.66T+308.64T2(R2adj=0.79).结论 0~5 Gy范围内TCR基因突变频率与辐射剂量存在剂量-效应关系.照后4 d内TCR基因突变频率随时间的延长而继续增加,存在时间-效应关系.
目的 初步建立T細胞受體(TCR)突變頻率的劑量-效應和時間-效應模型,為探討TCR作為估算輻射生物劑量計提供依據.方法 將10名健康成年人的外週血淋巴細胞分成兩組.第1組4人(男性)的外週血淋巴細胞分彆給予0、0.5、1.0、1.5、2.0、2.5、3.0、3.5、4.0和5.0 Gv γ射線照射,用于擬閤劑量-效應麯線,第2組6人(男女各半)的外週血淋巴細胞給予2 Gy γ射線照射,用于擬閤時間-效應麯線.用流式細胞儀進行計數檢測,計算TCR基因突變頻率.結果 γ射線照射誘髮TCR MF的輻射劑量-效應麯線,擬閤最佳的模型為二次方程模型:TCR MF=92.14+22·61D2(R2adj=0.65);γ射線照射誘髮TCR MF的輻射時間-效應麯線,擬閤最佳的模型為二次多項式方程模型:TCR MF=3.74+743.66T+308.64T2(R2adj=0.79).結論 0~5 Gy範圍內TCR基因突變頻率與輻射劑量存在劑量-效應關繫.照後4 d內TCR基因突變頻率隨時間的延長而繼續增加,存在時間-效應關繫.
목적 초보건립T세포수체(TCR)돌변빈솔적제량-효응화시간-효응모형,위탐토TCR작위고산복사생물제량계제공의거.방법 장10명건강성년인적외주혈림파세포분성량조.제1조4인(남성)적외주혈림파세포분별급여0、0.5、1.0、1.5、2.0、2.5、3.0、3.5、4.0화5.0 Gv γ사선조사,용우의합제량-효응곡선,제2조6인(남녀각반)적외주혈림파세포급여2 Gy γ사선조사,용우의합시간-효응곡선.용류식세포의진행계수검측,계산TCR기인돌변빈솔.결과 γ사선조사유발TCR MF적복사제량-효응곡선,의합최가적모형위이차방정모형:TCR MF=92.14+22·61D2(R2adj=0.65);γ사선조사유발TCR MF적복사시간-효응곡선,의합최가적모형위이차다항식방정모형:TCR MF=3.74+743.66T+308.64T2(R2adj=0.79).결론 0~5 Gy범위내TCR기인돌변빈솔여복사제량존재제량-효응관계.조후4 d내TCR기인돌변빈솔수시간적연장이계속증가,존재시간-효응관계.
Objective To study the dose-effect relationship and time-effect relationship of T cell receptor (TCR) gene mutation induced by γ-rays in lymphocytes of human peripheral blood.Methods Samples of peripheral blood were collected from 10 healthy adults and lymphocytes were separated.Four samples from males used to fit time-effect curve were exposed to γ-rays at the doses of 0,0.5,1.0,1.5,2.0,2.5,3.0,3.5,4.0,and 5.0 Gy,respectively,and 6 samples from 3 males and 3 females used to fit dose-effect curves were exposed to γ-rays of the dose of 2 Gy.Flow cytometry was used to detect the mutation frequency of TCR gene (TCR MF).Radiation dose-effect curves and time-effect curves were fitted and optimal mathematical models were selected respectively.Results The optimal mathematical model for radiation dose-effect was quadratic equation model:TCR MF = 92.14 + 22.61D2 (R2adj = 0.65).The optimal mathematical model for radiation time-effect was quadratic polynomial equation model:TCR MF = 3.74 + 743.66T + 308.64T2 (R2adj = 0.79).Conclusions TCR MF is increased as the γ-rayirradiation dose increases within the range of 0-5 Gy,and TCR MF is increased with the lapse of time within the range of 4 days after γ-ray radiation.