数学的实践与认识
數學的實踐與認識
수학적실천여인식
MATHEMATICS IN PRACTICE AND THEORY
2009年
17期
210-214
,共5页
二阶%非线性%脉冲微分方程%振动性
二階%非線性%脈遲微分方程%振動性
이계%비선성%맥충미분방정%진동성
second order%nonlinear%impulsive differential equations%oscillation
利用了Lakshmikantham等人建立的脉冲微分不等式讨论了一类二阶非线性脉冲微分方程解的振动性质,获得了此类方程振动所应具备的充分条件,同时改进了一些已知的结果,最后用一个具体的例子说明了是否带有脉冲对微分方程的振动性有很大的影响.
利用瞭Lakshmikantham等人建立的脈遲微分不等式討論瞭一類二階非線性脈遲微分方程解的振動性質,穫得瞭此類方程振動所應具備的充分條件,同時改進瞭一些已知的結果,最後用一箇具體的例子說明瞭是否帶有脈遲對微分方程的振動性有很大的影響.
이용료Lakshmikantham등인건립적맥충미분불등식토론료일류이계비선성맥충미분방정해적진동성질,획득료차류방정진동소응구비적충분조건,동시개진료일사이지적결과,최후용일개구체적례자설명료시부대유맥충대미분방정적진동성유흔대적영향.
This paper discussed the oscillation of second-order nonlinear differential equations with impulses by using impulsive differential inequalities established by Lakshmikantham et al. Sufficient conditions for all solutions of the equation to be oscillated were obtainedour work generalizes some known results. Finally an example was presented to explain the key role of impulses in generating oscillatory.