仪器仪表学报
儀器儀錶學報
의기의표학보
CHINESE JOURNAL OF SCIENTIFIC INSTRUMENT
2009年
11期
2309-2315
,共7页
张世峰%童德华%薛红宇%宁芳青
張世峰%童德華%薛紅宇%寧芳青
장세봉%동덕화%설홍우%저방청
焦炉%鼓风机系统%集气管压力%神经网络%逆控制%解耦
焦爐%鼓風機繫統%集氣管壓力%神經網絡%逆控製%解耦
초로%고풍궤계통%집기관압력%신경망락%역공제%해우
coke-oven%blast blower system%collector pressure%neural network%inverse control%decoupling
针对焦化鼓风机系统具有非线性时变、多变量、强耦合及存在随机干扰的特点,通过采用基于最近邻聚类方法的RBF神经网络快速学习算法,实时在线辨识,建立被控对象的精确逆模型并用于控制,实现了将具有强耦合特性的多输入多输出(MIMO)系统解耦成单个独立的伪线性对象,并提出一种基于RBF神经网络逆控制与非线性比例积分微分(PID)控制相结合的智能控制策略,保证了系统稳定的同时改善了控制系统性能.仿真和应用结果证实了该控制策略具有快速适应对象和过程变化的能力及较强的鲁棒性.
針對焦化鼓風機繫統具有非線性時變、多變量、彊耦閤及存在隨機榦擾的特點,通過採用基于最近鄰聚類方法的RBF神經網絡快速學習算法,實時在線辨識,建立被控對象的精確逆模型併用于控製,實現瞭將具有彊耦閤特性的多輸入多輸齣(MIMO)繫統解耦成單箇獨立的偽線性對象,併提齣一種基于RBF神經網絡逆控製與非線性比例積分微分(PID)控製相結閤的智能控製策略,保證瞭繫統穩定的同時改善瞭控製繫統性能.倣真和應用結果證實瞭該控製策略具有快速適應對象和過程變化的能力及較彊的魯棒性.
침대초화고풍궤계통구유비선성시변、다변량、강우합급존재수궤간우적특점,통과채용기우최근린취류방법적RBF신경망락쾌속학습산법,실시재선변식,건립피공대상적정학역모형병용우공제,실현료장구유강우합특성적다수입다수출(MIMO)계통해우성단개독립적위선성대상,병제출일충기우RBF신경망락역공제여비선성비례적분미분(PID)공제상결합적지능공제책략,보증료계통은정적동시개선료공제계통성능.방진화응용결과증실료해공제책략구유쾌속괄응대상화과정변화적능력급교강적로봉성.
A precise inverse model controller was constructed, which is in accordance with the characteristics of blast blower system in coke oven. The system has some special characteristics such as nonlinearity, time-variant, uncertainty, stochastic disturbance, multiple-input-multiple-output (MIMO) and strong coupling, and the blast blower model can realize precise control and on-line identification. The nonlinear MIMO system is decoupled into isolated dynamic pseudo linear objects using radial basis function (RBF) neural network based on nearest neighbor clustering algorithm. An intelligent control strategy is presented, which is based on the proposed RBF neural network inverse controller and a nonlinear PID controller. Simulation and application results demonstrate that stability and improved system performance can be achieved simultaneously. This strategy has the ability to adapt process and object changing quickly and good robust performance in simulation and practical applications.