机器人
機器人
궤기인
ROBOT
2010年
1期
119-124
,共6页
桥式%柔性机构%卡氏定理%伪刚体模型%有限元方法
橋式%柔性機構%卡氏定理%偽剛體模型%有限元方法
교식%유성궤구%잡씨정리%위강체모형%유한원방법
bridge-type%compliant mechanism%Castigliano's theorem%pseudo-rigid-body model%finite element method
研究设计了用于压电尺蠖驱动器中间驱动机构的桥式直接耦合柔件机构,建立了该柔性机构的简化模型.利用卡氏定理推导了刚度方程,将柔性机构简化为单自由度弹簧质点系统,得到同有频率.通过实验测试了该柔性机构的刚度和固有频率,并分别与有限元法和解析法的结果进行对比分析.结果表明:刚度和固有频率的解析解误差分别为5.5%和14.1%,有限元解的误差分别为7.7%和10.1%,验证了解析解和有限元解的正确性.为了方便初始设计阶段的参数优化设计,利用有限元方法研究了该柔性机构各几何参数对机构静动态特性的影响.给出了一种简单有效的优化设计方法,通过改变该柔性机构的几何参数对其静动态特性进行优化.
研究設計瞭用于壓電呎蠖驅動器中間驅動機構的橋式直接耦閤柔件機構,建立瞭該柔性機構的簡化模型.利用卡氏定理推導瞭剛度方程,將柔性機構簡化為單自由度彈簧質點繫統,得到同有頻率.通過實驗測試瞭該柔性機構的剛度和固有頻率,併分彆與有限元法和解析法的結果進行對比分析.結果錶明:剛度和固有頻率的解析解誤差分彆為5.5%和14.1%,有限元解的誤差分彆為7.7%和10.1%,驗證瞭解析解和有限元解的正確性.為瞭方便初始設計階段的參數優化設計,利用有限元方法研究瞭該柔性機構各幾何參數對機構靜動態特性的影響.給齣瞭一種簡單有效的優化設計方法,通過改變該柔性機構的幾何參數對其靜動態特性進行優化.
연구설계료용우압전척확구동기중간구동궤구적교식직접우합유건궤구,건립료해유성궤구적간화모형.이용잡씨정리추도료강도방정,장유성궤구간화위단자유도탄황질점계통,득도동유빈솔.통과실험측시료해유성궤구적강도화고유빈솔,병분별여유한원법화해석법적결과진행대비분석.결과표명:강도화고유빈솔적해석해오차분별위5.5%화14.1%,유한원해적오차분별위7.7%화10.1%,험증료해석해화유한원해적정학성.위료방편초시설계계단적삼수우화설계,이용유한원방법연구료해유성궤구각궤하삼수대궤구정동태특성적영향.급출료일충간단유효적우화설계방법,통과개변해유성궤구적궤하삼수대기정동태특성진행우화.
A bridge-type compliant mechanism with direct coupling for the intermediate drive mechanism of inchworm actuator is developed and its simplified model is also established. The stiffness equations are deduced according to Cas-tigliano's theorem and the natural frequency is derived with the compliant mechanism simplified as one DOF spring-mass system. The experimental tests of stiffness and natural frequency are carried out and the results are compared with the results of finite element analysis (FEA) and analytical method. The results show that the errors of the analytical model of stiffness and natural frequency are 5.5% and 14.1%, and the corresponding errors of FEA are 7.7% and 10.1% respectively. The experimental results show the validity of the analytical model FEA. In order to facilitate parameter optimum design in the initial design stage, FEA is used to study the influence of geometrical dimensions of the compliant mechanism on its static and dynamic performance. Then a simple optimum design procedure by changing geometrical dimensions to optimize static and dynamic performance of the compliant mechanism is presented.