绵阳师范学院学报
綿暘師範學院學報
면양사범학원학보
JOURNAL OF MIANYANG NORMAL UNIVERSITY
2011年
11期
25-28
,共4页
互补问题%集值映象%存在性%例外簇
互補問題%集值映象%存在性%例外簇
호보문제%집치영상%존재성%예외족
complementary problems%set - valued mapping%existence%elements of exceptional families
在文献[5-10]中Isac等人发现当多值互补问题无解时,与之相联系的映象一定存在一个序列满足一组条件,Isac等人称这个序列为例外簇,另一方面,当多值互补问题有解时,与之相联系的映象一定不存在例外簇。该文证明了几类互补理论所涉及的非线性映象没有例外簇元,并得出与之相联系的集值互补问题(MCP)是可解的。
在文獻[5-10]中Isac等人髮現噹多值互補問題無解時,與之相聯繫的映象一定存在一箇序列滿足一組條件,Isac等人稱這箇序列為例外簇,另一方麵,噹多值互補問題有解時,與之相聯繫的映象一定不存在例外簇。該文證明瞭幾類互補理論所涉及的非線性映象沒有例外簇元,併得齣與之相聯繫的集值互補問題(MCP)是可解的。
재문헌[5-10]중Isac등인발현당다치호보문제무해시,여지상련계적영상일정존재일개서렬만족일조조건,Isac등인칭저개서렬위예외족,령일방면,당다치호보문제유해시,여지상련계적영상일정불존재예외족。해문증명료궤류호보이론소섭급적비선성영상몰유예외족원,병득출여지상련계적집치호보문제(MCP)시가해적。
Some mathematicians, such as lsac, found out that, in literature 5 - 10, there exists a certain group of conditions for certain mappings relating to no solution to multi - valued complementary problems, it is called exceptional family; and also, if there are solutions, there is no this kind of family. This paper is to prove that the corresponding complementary problems are solvable by identifying some classes of nonlinear tunctions without exceptional families of elements