西南农业学报
西南農業學報
서남농업학보
SOUTHWEST CHINA JOURNAL OF AGRICULTURAL SCIENCES
2009年
6期
1709-1713
,共5页
于平福%陆宇明%韦莉萍%龙文卿%苏晓波
于平福%陸宇明%韋莉萍%龍文卿%囌曉波
우평복%륙우명%위리평%룡문경%소효파
灰色预测模型GM(1,1)%广义回归神经网络(GRNN)%木薯产量预测
灰色預測模型GM(1,1)%廣義迴歸神經網絡(GRNN)%木藷產量預測
회색예측모형GM(1,1)%엄의회귀신경망락(GRNN)%목서산량예측
GM(1,1)%General regression neural network (GRNN)%Yield prediction of cassava
将GM(1,1)预测模型与广义回归神经网络(GRNN)相融合,构建一种兼具两者优点、互补型的灰色广义回归神经网络(GGRNN).以1985-2007年度广西木薯鲜薯总产量为数据样本,采用GGRNN模型进行广西木薯产量预测研究.研究结果表明,GGRNN训练期平均拟合指数、预测期平均拟合指数分别为0.99和0.93,分别比GM(1,1)模型高0.09和0.04.该组合模型在拟合精度和预测精度方面均优于单一的GM(1,1)预测模型,并具有自学习能力、非线性映射能力以及适应性强等优点,为木薯产量预测的定量化和智能化提供了一条有效途径.
將GM(1,1)預測模型與廣義迴歸神經網絡(GRNN)相融閤,構建一種兼具兩者優點、互補型的灰色廣義迴歸神經網絡(GGRNN).以1985-2007年度廣西木藷鮮藷總產量為數據樣本,採用GGRNN模型進行廣西木藷產量預測研究.研究結果錶明,GGRNN訓練期平均擬閤指數、預測期平均擬閤指數分彆為0.99和0.93,分彆比GM(1,1)模型高0.09和0.04.該組閤模型在擬閤精度和預測精度方麵均優于單一的GM(1,1)預測模型,併具有自學習能力、非線性映射能力以及適應性彊等優點,為木藷產量預測的定量化和智能化提供瞭一條有效途徑.
장GM(1,1)예측모형여엄의회귀신경망락(GRNN)상융합,구건일충겸구량자우점、호보형적회색엄의회귀신경망락(GGRNN).이1985-2007년도엄서목서선서총산량위수거양본,채용GGRNN모형진행엄서목서산량예측연구.연구결과표명,GGRNN훈련기평균의합지수、예측기평균의합지수분별위0.99화0.93,분별비GM(1,1)모형고0.09화0.04.해조합모형재의합정도화예측정도방면균우우단일적GM(1,1)예측모형,병구유자학습능력、비선성영사능력이급괄응성강등우점,위목서산량예측적정양화화지능화제공료일조유효도경.
Gray general regression neural network (GGRNN) is constructed by combining gray model [GM (1, 1)] and general regression neural network (GRNN) with their advantages and a complementary for each other. In the present study, the use of GGRNN was illustrated by the yield prediction of cassava. The total yield of cassava in Guangxi during 1985-2007 was used as data samples to predict the yield of cassava during 2004-2007 by GGRNN model. The results showed that the average FI in training time and predicting time of GGRNN was 0.99 and 0.93, with an increasing of 0.09 and 0.04 as compared to GM(1,1), respectively. The fitting and predicting precision of GGRRN were better than that of GM(1,1), and GGRRN had advantages on convenience of calculation, nonlinear mapping ability and wide suitability, etc. So it would provide an effective method on quantitative and intelligent prediction of yield of cassava.