应用与环境生物学报
應用與環境生物學報
응용여배경생물학보
CHINESE JOURNAL OF APPLIED & ENVIRONMENTAL BIOLOGY
2009年
5期
655-659
,共5页
郭培培%江洪%余树全%马元丹%窦荣鹏%宋新章
郭培培%江洪%餘樹全%馬元丹%竇榮鵬%宋新章
곽배배%강홍%여수전%마원단%두영붕%송신장
亚热带%针叶树种%阔叶树种%凋落物%失重率
亞熱帶%針葉樹種%闊葉樹種%凋落物%失重率
아열대%침협수충%활협수충%조락물%실중솔
subtropical%coniferous tree%broad-leaved tree%litter%weight loss rate
针叶和阔叶树种分别代表了不同的生活型,其凋落叶片具有不同的分解速率.应用分解网袋法,在中国亚热带地区,选取了具有代表性的3种针叶树种(马尾松Pinus massoniana、水杉Metasequoia glyptostroboides和杉木Cunninghamia lanceolata)和3种阔叶树种(木荷Schima superb、乐昌含笑Michelis chapensis和青冈Cyclobalanopsisgtauca)的凋落叶,放置于样地杭州千岛湖的林地中,经过1 a的分解实验,分析不同类型树种凋落叶的分解特征.6种树种凋落叶质量损失过程基本符合Olson指数模型,其中,3种针叶树种(马尾松、水杉和杉木)凋落叶的分解系数k值(分别为0.51、0.30和0.44),明显小于3种阔叶树种(木荷、乐昌含笑和青冈)凋落叶的分解系数k值(分别为0.55、1.12和0.66);同时,针叶树种(马尾松、水杉和杉木)凋落叶分解50%和95%所需时间(分别为1.36、2.31、1.78 a和5.87、9.99、7.68 a),大于阔叶树种(木荷、乐昌含笑和青冈)凋落叶的分解时间(分别为1.26、0.62、1.05 a和5.45、2.68、4.54a).多元回归分析表明,凋落物分解系数与初始钾元素含量显著相关(P<0.05).一元线性回归分析表明,凋落物的分解系数与初始钾元素和初始木质素含量均具有显著性差异(P<0.05).亚热带地区针、阔叶树种凋落叶分解的差异与自身质量密切相关,其中初始木质素与钾元素含量是控制凋落物分解的主要因素.图2表2参23
針葉和闊葉樹種分彆代錶瞭不同的生活型,其凋落葉片具有不同的分解速率.應用分解網袋法,在中國亞熱帶地區,選取瞭具有代錶性的3種針葉樹種(馬尾鬆Pinus massoniana、水杉Metasequoia glyptostroboides和杉木Cunninghamia lanceolata)和3種闊葉樹種(木荷Schima superb、樂昌含笑Michelis chapensis和青岡Cyclobalanopsisgtauca)的凋落葉,放置于樣地杭州韆島湖的林地中,經過1 a的分解實驗,分析不同類型樹種凋落葉的分解特徵.6種樹種凋落葉質量損失過程基本符閤Olson指數模型,其中,3種針葉樹種(馬尾鬆、水杉和杉木)凋落葉的分解繫數k值(分彆為0.51、0.30和0.44),明顯小于3種闊葉樹種(木荷、樂昌含笑和青岡)凋落葉的分解繫數k值(分彆為0.55、1.12和0.66);同時,針葉樹種(馬尾鬆、水杉和杉木)凋落葉分解50%和95%所需時間(分彆為1.36、2.31、1.78 a和5.87、9.99、7.68 a),大于闊葉樹種(木荷、樂昌含笑和青岡)凋落葉的分解時間(分彆為1.26、0.62、1.05 a和5.45、2.68、4.54a).多元迴歸分析錶明,凋落物分解繫數與初始鉀元素含量顯著相關(P<0.05).一元線性迴歸分析錶明,凋落物的分解繫數與初始鉀元素和初始木質素含量均具有顯著性差異(P<0.05).亞熱帶地區針、闊葉樹種凋落葉分解的差異與自身質量密切相關,其中初始木質素與鉀元素含量是控製凋落物分解的主要因素.圖2錶2參23
침협화활협수충분별대표료불동적생활형,기조락협편구유불동적분해속솔.응용분해망대법,재중국아열대지구,선취료구유대표성적3충침협수충(마미송Pinus massoniana、수삼Metasequoia glyptostroboides화삼목Cunninghamia lanceolata)화3충활협수충(목하Schima superb、악창함소Michelis chapensis화청강Cyclobalanopsisgtauca)적조락협,방치우양지항주천도호적임지중,경과1 a적분해실험,분석불동류형수충조락협적분해특정.6충수충조락협질량손실과정기본부합Olson지수모형,기중,3충침협수충(마미송、수삼화삼목)조락협적분해계수k치(분별위0.51、0.30화0.44),명현소우3충활협수충(목하、악창함소화청강)조락협적분해계수k치(분별위0.55、1.12화0.66);동시,침협수충(마미송、수삼화삼목)조락협분해50%화95%소수시간(분별위1.36、2.31、1.78 a화5.87、9.99、7.68 a),대우활협수충(목하、악창함소화청강)조락협적분해시간(분별위1.26、0.62、1.05 a화5.45、2.68、4.54a).다원회귀분석표명,조락물분해계수여초시갑원소함량현저상관(P<0.05).일원선성회귀분석표명,조락물적분해계수여초시갑원소화초시목질소함량균구유현저성차이(P<0.05).아열대지구침、활협수충조락협분해적차이여자신질량밀절상관,기중초시목질소여갑원소함량시공제조락물분해적주요인소.도2표2삼23
Coniferous and broad-leaved trees represent different life types, and their litters differ in decomposition rates. Six species (Pinus massoniana, Metasequoia glyptostroboides, Cunninghamia lanceolata, Schima superb, Michelis chapensis, Cyclobalanopsis glauca) representing typical coniferous and broad-leaved trees were sampled as experimental material for studying leaf litter decomposition in the subtropical region of china. The collected leaf litters were put in litter bags and placed in the forests of the Qiandao Lake. The decomposition characteristics of different leaf litters were analyzed after one-year decomposition. The leaf litter decomposition processes of the six trees were calculated by Olson's exponential models, which were found well fit to the data. The K values of the three coniferous trees (P. massoniana, M. glyptostroboides, C. lanceolata) were 0.51, 0.30 and 0.44, which were much lower than those (0.55, 1.12 and 0.66) of the three broad-leaved trees (S. superb, M. chapensis, C. glauca). The litters of the coniferous trees required 1.36, 2.31 and 1.78 years for 50% decomposition, and 5.87, 9.99 and 7.68 years for 95% decomposition respectively, while those of the broad-leaved trees needed 1.26, 0.62 and 1.05 years for 50% decomposition, and 5.45, 2.68 and 4.54 years for 95% decomposition. There was a significant correlation between the litter decomposition rates and the initial K concentrations (P<0.05) according to multiple regression analysis. Also, there were significant correlations between the litter decomposition rates and the initial K and Lignin concentrations (P<0.05) based on the linear regression analysis. The difference in litter decomposition between coniferous and broad-leaved trees was significantly
related to their own qualities. It was found that the initial lignin and K concentrations were the key factors controlling the litter decomposition. Fig 2, Tab 2, Ref23