电力系统自动化
電力繫統自動化
전력계통자동화
AUTOMATION OF ELECTRIC POWER SYSTEMS
2009年
21期
32-35,81
,共5页
于晗%钟志勇%黄杰波%张建华
于晗%鐘誌勇%黃傑波%張建華
우함%종지용%황걸파%장건화
概率潮流计算%蒙特卡罗模拟法%拉丁超立方采样
概率潮流計算%矇特卡囉模擬法%拉丁超立方採樣
개솔조류계산%몽특잡라모의법%랍정초립방채양
probabilistic load flow calculation%Monte Carlo simulation%Latin hypercube sampling
与简单随机采样相结合的蒙特卡罗(Monte Carlo)模拟法只有在采样规模足够大时才能得到高精度的计算结果,计算量较大.文中提出了用拉丁超立方采样和Gram-Schmidt序列正交化方法改善采样值对输入随机变量的分布空间的覆盖程度、提高采样效率的计算方法,并应用于概率潮流计算中.IEEE 14节点系统和IEEE 118节点系统的算例验证了该方法的有效性.与传统方法相比,文中所述方法可以降低采样规模,更有效地估计输出随机变量的统计参数和概率分布,同时保留蒙特卡罗模拟法的优点,在处理相同随机变量的一系列随机问题时可以显著降低计算量.
與簡單隨機採樣相結閤的矇特卡囉(Monte Carlo)模擬法隻有在採樣規模足夠大時纔能得到高精度的計算結果,計算量較大.文中提齣瞭用拉丁超立方採樣和Gram-Schmidt序列正交化方法改善採樣值對輸入隨機變量的分佈空間的覆蓋程度、提高採樣效率的計算方法,併應用于概率潮流計算中.IEEE 14節點繫統和IEEE 118節點繫統的算例驗證瞭該方法的有效性.與傳統方法相比,文中所述方法可以降低採樣規模,更有效地估計輸齣隨機變量的統計參數和概率分佈,同時保留矇特卡囉模擬法的優點,在處理相同隨機變量的一繫列隨機問題時可以顯著降低計算量.
여간단수궤채양상결합적몽특잡라(Monte Carlo)모의법지유재채양규모족구대시재능득도고정도적계산결과,계산량교대.문중제출료용랍정초립방채양화Gram-Schmidt서렬정교화방법개선채양치대수입수궤변량적분포공간적복개정도、제고채양효솔적계산방법,병응용우개솔조류계산중.IEEE 14절점계통화IEEE 118절점계통적산례험증료해방법적유효성.여전통방법상비,문중소술방법가이강저채양규모,경유효지고계수출수궤변량적통계삼수화개솔분포,동시보류몽특잡라모의법적우점,재처리상동수궤변량적일계렬수궤문제시가이현저강저계산량.
Monte Carlo simulation method combined with simple random sampling is easy to use;and higher accuracy can be obtained only with a large enough sample size.Consequently,in order to achieve lowers error,the computational speed will have to be reduced and the computational costs remain very high.An effective sampling method,Latin hypercube sampling,is integrated into the probabilistie load flow calculation to increase the sampling efficiency of Monte Carlo simulation by improving the sample values coverage of random variables input spaces.The effectiveness and efficiency of the proposed method is proven by the comparative tests in the IEEE 14-bus system and IEEE 118-bus system.Compared with simple random sampling,it needs a much smaller sampling number to get a specified accuracy,and can effectively evaluate the statistical parameters and probability distribution of output stochastic variables.At the same time,the advantages of Monte Carlo simulation are preserved,and computational cost is dramatically reduced when dealing the stochastic problems of the same stochastic va riables.