计算机与应用化学
計算機與應用化學
계산궤여응용화학
COMPUTERS AND APPLIED CHEMISTRY
2009年
12期
1534-1538
,共5页
张庆友%胡卫平%郝军峰%许禄
張慶友%鬍衛平%郝軍峰%許祿
장경우%호위평%학군봉%허록
苯环型化合物%二维结构%分子形状%手性程度
苯環型化閤物%二維結構%分子形狀%手性程度
분배형화합물%이유결구%분자형상%수성정도
benzenoids%two dimensional structures%molecular shape%degree of chirality
以二进制编码描述苯环型化合物分子在二维空间的形状,所得到的编码能够区分二维平面上一对苯环型化合物对映体.由于对映体的二进制编码不同,基于化合物和其镜像的编码计算得到了海明距离,并以其表征1对对映体的定量手性程度.以28对周长为22的手性苯环型化合物对映体为实例,计算苯环型化合物的定量手性程度,其结果仅仅有2个数值,分别为海明距离4和6.具有不同形状的该类化合物很多,为了提高分辨率,分别计算了窗口宽度从1~16时的海明距离,并分别以其来代表定量手性程度.结果显示全部16个窗口的海明距离的加和具有最大的区分能力,共得到17种海明距离.如果将每一窗口的细节引入到计算中,并采用类似的方法计算,则实例中所有的28个苯环型化合物实现了完全的区分,所得到的定最手性程度的区分能力是令人满意的.本研究证明:如果用适当的编码来描述二维空间中分子的边界,能够解决分子形状的定量表征.尽管本文的二进制编码衍牛于平面系统的苯环型化合物,并以其描述分子的边界来进行手性程度的测量,但是,原则上同样的方法可以应用到所有二维平面上的形状描述.
以二進製編碼描述苯環型化閤物分子在二維空間的形狀,所得到的編碼能夠區分二維平麵上一對苯環型化閤物對映體.由于對映體的二進製編碼不同,基于化閤物和其鏡像的編碼計算得到瞭海明距離,併以其錶徵1對對映體的定量手性程度.以28對週長為22的手性苯環型化閤物對映體為實例,計算苯環型化閤物的定量手性程度,其結果僅僅有2箇數值,分彆為海明距離4和6.具有不同形狀的該類化閤物很多,為瞭提高分辨率,分彆計算瞭窗口寬度從1~16時的海明距離,併分彆以其來代錶定量手性程度.結果顯示全部16箇窗口的海明距離的加和具有最大的區分能力,共得到17種海明距離.如果將每一窗口的細節引入到計算中,併採用類似的方法計算,則實例中所有的28箇苯環型化閤物實現瞭完全的區分,所得到的定最手性程度的區分能力是令人滿意的.本研究證明:如果用適噹的編碼來描述二維空間中分子的邊界,能夠解決分子形狀的定量錶徵.儘管本文的二進製編碼衍牛于平麵繫統的苯環型化閤物,併以其描述分子的邊界來進行手性程度的測量,但是,原則上同樣的方法可以應用到所有二維平麵上的形狀描述.
이이진제편마묘술분배형화합물분자재이유공간적형상,소득도적편마능구구분이유평면상일대분배형화합물대영체.유우대영체적이진제편마불동,기우화합물화기경상적편마계산득도료해명거리,병이기표정1대대영체적정량수성정도.이28대주장위22적수성분배형화합물대영체위실례,계산분배형화합물적정량수성정도,기결과부부유2개수치,분별위해명거리4화6.구유불동형상적해류화합물흔다,위료제고분변솔,분별계산료창구관도종1~16시적해명거리,병분별이기래대표정량수성정도.결과현시전부16개창구적해명거리적가화구유최대적구분능력,공득도17충해명거리.여과장매일창구적세절인입도계산중,병채용유사적방법계산,칙실례중소유적28개분배형화합물실현료완전적구분,소득도적정최수성정도적구분능력시령인만의적.본연구증명:여과용괄당적편마래묘술이유공간중분자적변계,능구해결분자형상적정량표정.진관본문적이진제편마연우우평면계통적분배형화합물,병이기묘술분자적변계래진행수성정도적측량,단시,원칙상동양적방법가이응용도소유이유평면상적형상묘술.
The two -dimensional shape of molecular periphery of benzenoid was described by the binary code, which is able to distinguish between a pair of enantiomers. Since enantiomers have distinct codes, the quantitative measure of chirality based on Hamming distance between the codes for a structure and its mirror image was obtained. The quantitative measure of chirality was implemented to 28 pairs of enantiomers of benzenoids, which have constant perimeter 22, and the benzenoids can only be grouped into two classes -Hamming distance 4 and 6. It is hard to imagine that so many molecules would have the same ehirality measure. To increase the resolution, the Hamming distance of different widths of windows from 1 to 16 was calculated to represent degree of chirality, individually, and the sum of Hamming distance of 16 windows has the most discrimination - 17 classes. When the detail of each window was involved and similar methods were adopted in the calculation, all 28 benzenoids were able to be distinguished. The distinction of degree of chirality was satisfactory. The present work has demonstrated that molecular shapes can be tackled quantitatively using appropriate codes to describe the molecular periphery. We considered the use of binary codes for benzenoid - like planar systems that represent molecular boundary for deriving a chirality measure. The same approach in principle can apply to all 2D shapes.