高校化学工程学报
高校化學工程學報
고교화학공정학보
JOURNAL OF CHEMICAL ENGINEERING OF CHINESE UNIVERSITIES
2010年
1期
144-149
,共6页
烟气%脱硫%中空纤维膜%膜吸收%数学模型
煙氣%脫硫%中空纖維膜%膜吸收%數學模型
연기%탈류%중공섬유막%막흡수%수학모형
fuel gas%desulfurization%hollow fiber membrane%membrane absorption%mathematical model
对中空纤维膜接触器用于烟气脱硫的工艺进行了实验研究并建立了脱硫率计算模型.采用疏水性聚丙烯中空纤维膜组装膜组件,用SO_2钢瓶气与空气配制模拟烟气,气相走中空纤维膜内侧,以Na_2SO_3溶液为吸收剂进行脱硫实验研究.实验结果表明,该脱硫工艺脱硫率高且稳定.当Na_2SO_3吸收液浓度大于5%,液相阻力可以忽略;脱硫率随气速的增大而减小,而随膜组件有效长度、膜传质系数的增大而增大.忽略液相传质阻力,用传质速率与物料衡算方法及传质经验关联式,建立微孔中空纤维膜接触器烟气脱硫率计算模型,模型计算值与实验值误差小于9.5%,模型能比较可靠地模拟烟气脱硫过程,通过该模型可以快捷计算脱硫率.
對中空纖維膜接觸器用于煙氣脫硫的工藝進行瞭實驗研究併建立瞭脫硫率計算模型.採用疏水性聚丙烯中空纖維膜組裝膜組件,用SO_2鋼瓶氣與空氣配製模擬煙氣,氣相走中空纖維膜內側,以Na_2SO_3溶液為吸收劑進行脫硫實驗研究.實驗結果錶明,該脫硫工藝脫硫率高且穩定.噹Na_2SO_3吸收液濃度大于5%,液相阻力可以忽略;脫硫率隨氣速的增大而減小,而隨膜組件有效長度、膜傳質繫數的增大而增大.忽略液相傳質阻力,用傳質速率與物料衡算方法及傳質經驗關聯式,建立微孔中空纖維膜接觸器煙氣脫硫率計算模型,模型計算值與實驗值誤差小于9.5%,模型能比較可靠地模擬煙氣脫硫過程,通過該模型可以快捷計算脫硫率.
대중공섬유막접촉기용우연기탈류적공예진행료실험연구병건립료탈류솔계산모형.채용소수성취병희중공섬유막조장막조건,용SO_2강병기여공기배제모의연기,기상주중공섬유막내측,이Na_2SO_3용액위흡수제진행탈류실험연구.실험결과표명,해탈류공예탈류솔고차은정.당Na_2SO_3흡수액농도대우5%,액상조력가이홀략;탈류솔수기속적증대이감소,이수막조건유효장도、막전질계수적증대이증대.홀략액상전질조력,용전질속솔여물료형산방법급전질경험관련식,건립미공중공섬유막접촉기연기탈류솔계산모형,모형계산치여실험치오차소우9.5%,모형능비교가고지모의연기탈류과정,통과해모형가이쾌첩계산탈류솔.
The technology of using microporous hollow fiber membrane contactor (HFMC) to desulfurize the flue gas was investigated experimentally, and the corresponding calculation model used for the calculation of the flue gas desulfurization ratio by HFMC was developed. In the experiments conducted, the Na_2SO_3 solution was used as absorbent and the flue gas flowing in the inner side of the hollow fiber membrane was simulated by mixing the SO_2 with air. The experimental results show that the desulfurization ratio of using HFMC is high and stable, and the mass-transfer resistance on the liquid phase side can be neglected when the concentration of Na_2SO_3 in the absorbent is higher than 5%; the desulfurization ratio increases with increasing the length of the membrane module and the mass-transfer coefficient of the membrane, decreases with the increase of the flue gas velocity. Based on neglecting the mass-transfer resistance of liquid phase, the desulfurization ratio calculation model for HFMC was established via the calculations of material balance and mass-transfer rate calculated by using the empirical correlative equation of mass-transfer. The results show that the established model can simulate the flue gas desulfuration process rather reliably; using it to calculate the desulfurization ratio of flue gas by HFMC is easy and convenient, and the differences between the calculation results and the experimental data are within 9.5%.