数学杂志
數學雜誌
수학잡지
JOURNAL OF MATHEMATICS
2004年
2期
156-162
,共7页
不连续微分方程%周期边值问题%存在性
不連續微分方程%週期邊值問題%存在性
불련속미분방정%주기변치문제%존재성
existence%periodic boundary value problem%discontinuous differential equation
本文研究Lienard方程:x"+f(t,x,x')x'+g(t,x)=h(t,x,x')的周期边值问题,其中f,g,h均为Caratbeodory函数.利用Leray-Schauder度理论,在适当的条件下证明了该问题解的存在性.
本文研究Lienard方程:x"+f(t,x,x')x'+g(t,x)=h(t,x,x')的週期邊值問題,其中f,g,h均為Caratbeodory函數.利用Leray-Schauder度理論,在適噹的條件下證明瞭該問題解的存在性.
본문연구Lienard방정:x"+f(t,x,x')x'+g(t,x)=h(t,x,x')적주기변치문제,기중f,g,h균위Caratbeodory함수.이용Leray-Schauder도이론,재괄당적조건하증명료해문제해적존재성.
In this paper we study the periodic boundary value problem of Lienard equation:x"+ f(t,x,x')x' + g(t,x) = h(t,x,x'),where f, g and h are Caratheodory functions. Using Leray-Schauder degree theory,we prove that the problem has at least one solution under appropriate conditions.