北京交通大学学报
北京交通大學學報
북경교통대학학보
JOURNAL OF NORTHERN JIAOTONG UNIVERSITY
2009年
6期
128-131,136
,共5页
梁伟%伍世虔%方志军%袁嘉晟
樑偉%伍世虔%方誌軍%袁嘉晟
량위%오세건%방지군%원가성
红外人脸识别%血流模型%双树复数小波%傅里叶变换
紅外人臉識彆%血流模型%雙樹複數小波%傅裏葉變換
홍외인검식별%혈류모형%쌍수복수소파%부리협변환
infrared face recognition%blood perfusion model%Dual2Tree complex wavelet%Fourier Transform
提出了一种基于血流图与双树复数小波域傅里叶变换的红外人脸识别方法.首先利用血流模型把温谱图转换成血流图,然后将人脸血流图进行一级双树复数小波分解,保留分解后的4个低频子带并分别进行傅里叶变换,得到每个低频子带的特征矩阵,分别计算4个子带的欧氏距离并进行简单的加法融合,再用三阶近邻分类器得到最终的识别结果.为了减小算法的时间复杂度,我们对血流模型进行简化.实验结果表明,本文所提的方法有较好的识别结果.而简化的血流图相比原模型的识别率没有明显的下降,甚至某些情况下还稍高于血流模型,说明本文的方法是有效的.
提齣瞭一種基于血流圖與雙樹複數小波域傅裏葉變換的紅外人臉識彆方法.首先利用血流模型把溫譜圖轉換成血流圖,然後將人臉血流圖進行一級雙樹複數小波分解,保留分解後的4箇低頻子帶併分彆進行傅裏葉變換,得到每箇低頻子帶的特徵矩陣,分彆計算4箇子帶的歐氏距離併進行簡單的加法融閤,再用三階近鄰分類器得到最終的識彆結果.為瞭減小算法的時間複雜度,我們對血流模型進行簡化.實驗結果錶明,本文所提的方法有較好的識彆結果.而簡化的血流圖相比原模型的識彆率沒有明顯的下降,甚至某些情況下還稍高于血流模型,說明本文的方法是有效的.
제출료일충기우혈류도여쌍수복수소파역부리협변환적홍외인검식별방법.수선이용혈류모형파온보도전환성혈류도,연후장인검혈류도진행일급쌍수복수소파분해,보류분해후적4개저빈자대병분별진행부리협변환,득도매개저빈자대적특정구진,분별계산4개자대적구씨거리병진행간단적가법융합,재용삼계근린분류기득도최종적식별결과.위료감소산법적시간복잡도,아문대혈류모형진행간화.실험결과표명,본문소제적방법유교호적식별결과.이간화적혈류도상비원모형적식별솔몰유명현적하강,심지모사정황하환초고우혈류모형,설명본문적방법시유효적.
An efficient method for infrared face recognition by blood perfusion model of human face and FFT is proposed. Firstly, Each infrared face image is converted into blood perfusion data by blood perfusion model to obtain consistent facial images without effect of ambient variations. Secondly, blood perfusion data are decomposed using one scales' Dual2Tree 2-D Complex discrete wavelet transform. Then, four low frequency subbands obtained after transforming are further transformed via Fourier Transform (FT). The features extracted from the reserved subbands in FT domain are used for recognition computing four subbands' Euclidean distance and fusing them using simple add. then using the 3-nn classifier in the Euclidean distance to obtain the final recognition results. In order to reduce time complexity of our algorithm, the blood model is modified. by principles of infrared imaging and biological heat transfer and temperature information. The experiments conducted illustrate that the method proposed in this paper has better performance. While the recognition rate wasn't decrease based on modified blood model compared to blood model obviously and have even lightly improved in some cases, it shows that our method is efficient.