中华预防医学杂志
中華預防醫學雜誌
중화예방의학잡지
CHINESE JOURNAL OF
2010年
1期
48-53
,共6页
黎健%吴寰宇%李燕婷%金汇明%顾宝柯%袁政安
黎健%吳寰宇%李燕婷%金彙明%顧寶柯%袁政安
려건%오환우%리연정%금회명%고보가%원정안
模型%统计学%痢疾%发病率%预测
模型%統計學%痢疾%髮病率%預測
모형%통계학%이질%발병솔%예측
Model%statistical%Dysentery%Incidence%Forecasting
目的 探讨构建并应用自回归求和移动平均(autoregressive integrated moving average,ARIMA)模型预测上海市痢疾发病率的可行性.方法 基于1990-2007年上海的逐月痢疾发病率,采用非条件最小二乘法估计模型参数,按照残差不相关原则与简洁原则确定模型结构,依据赤池信息准则(Akaike information criterion,AIC)及许瓦兹贝叶斯准则(Schwarz Bayesian criterion,SBC)确定模型的拟合优度,建立预测上海痢疾发病率的最优ARIMA模型.用所得模型预测上海2008年的痢疾发病率,比较预测值与实际值的差异;再以1990年1月至2009年6月的数据构建模型预测上海2010年的痢疾发病率.结果 模型ARIMA(1,1,1)(0,1,2)_(12)较好拟合了既往时间段痢疾发病率的时间序列,模型自回归参数(AR1=0.443)、移动平均参数(MA1=0.806)与季节移动平均参数(SMA1=0.543、SMA2=0.321)均有统计学意义(P<0.01),AIC值=2.878,SBC值=16.131,模型残差为白噪声,模型数学函数式为(1-0.443B)(1-B)(1-B~(12))Z_t=(1-0.806B)(1-0.543B~(12))(1-0.321B~(2×12)μ_t.2008年逐月痢疾发病率的预测值符合实际值的变动趋势,全年发病率预测值与实际值的相对误差率为6.78%.预测2010年上海市痢疾发病率为9.390/10万.结论 ARIMA模型可以较好地拟合上海市痢疾发病率的时间变化趋势,并可用于预测未来的痢疾发病率,是一种短期预测精度较高的预测模型.
目的 探討構建併應用自迴歸求和移動平均(autoregressive integrated moving average,ARIMA)模型預測上海市痢疾髮病率的可行性.方法 基于1990-2007年上海的逐月痢疾髮病率,採用非條件最小二乘法估計模型參數,按照殘差不相關原則與簡潔原則確定模型結構,依據赤池信息準則(Akaike information criterion,AIC)及許瓦玆貝葉斯準則(Schwarz Bayesian criterion,SBC)確定模型的擬閤優度,建立預測上海痢疾髮病率的最優ARIMA模型.用所得模型預測上海2008年的痢疾髮病率,比較預測值與實際值的差異;再以1990年1月至2009年6月的數據構建模型預測上海2010年的痢疾髮病率.結果 模型ARIMA(1,1,1)(0,1,2)_(12)較好擬閤瞭既往時間段痢疾髮病率的時間序列,模型自迴歸參數(AR1=0.443)、移動平均參數(MA1=0.806)與季節移動平均參數(SMA1=0.543、SMA2=0.321)均有統計學意義(P<0.01),AIC值=2.878,SBC值=16.131,模型殘差為白譟聲,模型數學函數式為(1-0.443B)(1-B)(1-B~(12))Z_t=(1-0.806B)(1-0.543B~(12))(1-0.321B~(2×12)μ_t.2008年逐月痢疾髮病率的預測值符閤實際值的變動趨勢,全年髮病率預測值與實際值的相對誤差率為6.78%.預測2010年上海市痢疾髮病率為9.390/10萬.結論 ARIMA模型可以較好地擬閤上海市痢疾髮病率的時間變化趨勢,併可用于預測未來的痢疾髮病率,是一種短期預測精度較高的預測模型.
목적 탐토구건병응용자회귀구화이동평균(autoregressive integrated moving average,ARIMA)모형예측상해시이질발병솔적가행성.방법 기우1990-2007년상해적축월이질발병솔,채용비조건최소이승법고계모형삼수,안조잔차불상관원칙여간길원칙학정모형결구,의거적지신식준칙(Akaike information criterion,AIC)급허와자패협사준칙(Schwarz Bayesian criterion,SBC)학정모형적의합우도,건립예측상해이질발병솔적최우ARIMA모형.용소득모형예측상해2008년적이질발병솔,비교예측치여실제치적차이;재이1990년1월지2009년6월적수거구건모형예측상해2010년적이질발병솔.결과 모형ARIMA(1,1,1)(0,1,2)_(12)교호의합료기왕시간단이질발병솔적시간서렬,모형자회귀삼수(AR1=0.443)、이동평균삼수(MA1=0.806)여계절이동평균삼수(SMA1=0.543、SMA2=0.321)균유통계학의의(P<0.01),AIC치=2.878,SBC치=16.131,모형잔차위백조성,모형수학함수식위(1-0.443B)(1-B)(1-B~(12))Z_t=(1-0.806B)(1-0.543B~(12))(1-0.321B~(2×12)μ_t.2008년축월이질발병솔적예측치부합실제치적변동추세,전년발병솔예측치여실제치적상대오차솔위6.78%.예측2010년상해시이질발병솔위9.390/10만.결론 ARIMA모형가이교호지의합상해시이질발병솔적시간변화추세,병가용우예측미래적이질발병솔,시일충단기예측정도교고적예측모형.
ObjectiveTo explore the feasibility of establishing and applying of autoregressive integrated moving average(ARIMA) model to predict the incidence rate of dysentery in Shanghai,so as to provide the theoretical basis for prevention and control of dysentery. MethodsARIMA model was established based on the monthly incidence rate of dysentery of Shanghai from 1990 to 2007. The parameters of model were estimated through unconditional least squares method, the structure was determined according to criteria of residual un-correlation and concision, and the model goodness-of-fit was determined through Akaike information criterion ( AIC ) and Schwarz Bayesian criterion (SBC). The constructed optimal model was applied to predict the incidence rate of dysentery of Shanghai in 2008 and evaluate the validity of model through comparing the difference of predicted incidence rate and actual one. The incidence rate of dysentery in 2010 was predicted by ARIMA model based on the incidence rate from January 1990 to June 2009. Results The model ARIMA ( 1,1,1 ) (0,1,2) _(12) had a good fitness to the incidence rate with both autoregressive coefficient (AR1= 0. 443 ) during the past time series, moving average coefficient ( MA1 =0. 806) and seasonal moving average coefficient ( SMA1 = 0. 543, SMA2 = 0. 321 ) being statistically significant( P < 0. 01 ). AIC and SBC were 2. 878 and 16. 131 respectively and predicting error was white noise. The mathematic function was ( 1 - 0. 443B) ( 1 - B) ( 1 - B~(12) ) Z_t = ( 1 - 0. 806B) ( 1 - 0. 543B~(12))(1-0. 321B~(2×12) )μ_t,. The predicted incidence rate in 2008 was consistent with the actual one, with the relative error of 6. 78%. The predicted incidence rate of dysentery in 2010 based on the incidence rate from January 1990 to June 2009 would be 9. 390 per 100 thousand. ConclusionARIMA model can be used to fit the changes of incidence rate of dysentery and to forecast the future incidence rate in Shanghai. It is a predicted model of high precision for short-time forecast.