系统工程理论与实践
繫統工程理論與實踐
계통공정이론여실천
SYSTEMS ENGINEERING--THEORY & PRACTICE
2010年
1期
157-166
,共10页
师彪%李郁侠%于新花%闫旺
師彪%李鬱俠%于新花%閆旺
사표%리욱협%우신화%염왕
短期负荷预测%MPSO-FNN算法%预测精度%模糊神经网络
短期負荷預測%MPSO-FNN算法%預測精度%模糊神經網絡
단기부하예측%MPSO-FNN산법%예측정도%모호신경망락
short-term load forecasting%MPSO-FNN algodthm%accuracy%fuzzy neural network
为了提高短期电力负荷预测精度,提出了改进的粒子群-模糊神经网络混合优化算法.用改进的粒子群训练神经网络,实现了模糊神经网络参数优化.建立了基于该优化算法的短期负荷预测模型,综合考虑气象、天气、日期类型等影响负荷的因素,利用贵州电网历史数据进行短期负荷预测.仿真表明,该方法的收敛速度和预测精度优于传统模糊神经网络法、BP神经网络法、粒子群-BP算法和粒子群-模糊神经网络方法,该优化算法克服了神经网络和粒子群优化方法的缺点,改善了模糊神经网络的泛化能力,提高了电网短期负荷预测的精度,各日预测负荷的平均百分比误差可控制在1.2%以内.该算法可有效用于电力系统的短期负荷预测.
為瞭提高短期電力負荷預測精度,提齣瞭改進的粒子群-模糊神經網絡混閤優化算法.用改進的粒子群訓練神經網絡,實現瞭模糊神經網絡參數優化.建立瞭基于該優化算法的短期負荷預測模型,綜閤攷慮氣象、天氣、日期類型等影響負荷的因素,利用貴州電網歷史數據進行短期負荷預測.倣真錶明,該方法的收斂速度和預測精度優于傳統模糊神經網絡法、BP神經網絡法、粒子群-BP算法和粒子群-模糊神經網絡方法,該優化算法剋服瞭神經網絡和粒子群優化方法的缺點,改善瞭模糊神經網絡的汎化能力,提高瞭電網短期負荷預測的精度,各日預測負荷的平均百分比誤差可控製在1.2%以內.該算法可有效用于電力繫統的短期負荷預測.
위료제고단기전력부하예측정도,제출료개진적입자군-모호신경망락혼합우화산법.용개진적입자군훈련신경망락,실현료모호신경망락삼수우화.건립료기우해우화산법적단기부하예측모형,종합고필기상、천기、일기류형등영향부하적인소,이용귀주전망역사수거진행단기부하예측.방진표명,해방법적수렴속도화예측정도우우전통모호신경망락법、BP신경망락법、입자군-BP산법화입자군-모호신경망락방법,해우화산법극복료신경망락화입자군우화방법적결점,개선료모호신경망락적범화능력,제고료전망단기부하예측적정도,각일예측부하적평균백분비오차가공제재1.2%이내.해산법가유효용우전력계통적단기부하예측.
To improve short-term load forecasting accuracy,a modified particle swarm optimizer(MPSO)and fuzzy neural network(FNN)hybrid optimization algorithm is proposed.In which the FNN is trained by MPSO to implement the optimization of FNN parameters.The short-term load-forecasting model is established based on the modified particle swarm optimizer and fuzzy neural network hybrid optimization algorithm.In load forecasting such factors impacting loads as meteorology,weather and date types are comprehensively considered.Using the method and history load data of Guizhou power system,the shortterm load forecasting Was carried out.The result shows the convergence of method is faster and forecast accuracy is more accurate than that of the traditional fuzzy neural network,BP neural network,the particle swarm optimizer(PSO)and BP neural networks,PSO and fuzzy neural networks.The hybrid algorithm improves the fuzzy neural network generalization capacity,and overcomes the traditional PSO algorithm and fuzzy neural network that exist in some of the shortcomings.The short-term load-forecasting accuracy is improved in Guizhou power system.which average percentage error is not more than 1.2%.The hybrid algorithm can be used efficaciously in short time load forecasting of the power system.