光谱学与光谱分析
光譜學與光譜分析
광보학여광보분석
SPECTROSCOPY AND SPECTRAL ANALYSIS
2010年
3期
644-648
,共5页
李慧%蔺启忠%王钦军%刘庆杰%吴昀昭
李慧%藺啟忠%王欽軍%劉慶傑%吳昀昭
리혜%린계충%왕흠군%류경걸%오윤소
可见光近红外光谱%去噪%广义形态滤波%小波包最佳基阈值
可見光近紅外光譜%去譟%廣義形態濾波%小波包最佳基閾值
가견광근홍외광보%거조%엄의형태려파%소파포최가기역치
Visible and near infrared spectra%Denoising%Generalized morphological filter%Thresholding on wavelet packet decomposition best bases
对反射光潜数据进行去噪是提高光谱信息准确度的前提.传统时域平滑和频域去噪方法存在诸多缺点,本文首次将广义形态滤波方法用于可见近红外光谱的去噪处理,并提出基于小波包变换和数学形态学结合的光谱去噪方法.使用USGS光谱库中的植被光谱进行实验,采用信噪比(SNR)、均方误差根(RMSE)、波形相似度(NCC)和平滑度(SR)四个指标来评估去噪效果.结果表明,小波包最佳基阈值法和广义形态滤波法都能较好地保持波形和平滑度,广义形态滤波法能较好地消除幅值较大的随机噪声,但其对连续随机噪声中幅值较小的噪声成分不能有效消除;而小波包最佳基阈值法不能有效消除幅值较大的噪声成分;二者结合的方法组合了这两者的优点,使得幅值较大、较小的噪声成分都能较好地消除,同时还提高了相似度和平滑度指标,充分表明小波包最佳基阈值与广义形态滤波结合的方法是一种更好的可见光近红外光谱去噪方法.
對反射光潛數據進行去譟是提高光譜信息準確度的前提.傳統時域平滑和頻域去譟方法存在諸多缺點,本文首次將廣義形態濾波方法用于可見近紅外光譜的去譟處理,併提齣基于小波包變換和數學形態學結閤的光譜去譟方法.使用USGS光譜庫中的植被光譜進行實驗,採用信譟比(SNR)、均方誤差根(RMSE)、波形相似度(NCC)和平滑度(SR)四箇指標來評估去譟效果.結果錶明,小波包最佳基閾值法和廣義形態濾波法都能較好地保持波形和平滑度,廣義形態濾波法能較好地消除幅值較大的隨機譟聲,但其對連續隨機譟聲中幅值較小的譟聲成分不能有效消除;而小波包最佳基閾值法不能有效消除幅值較大的譟聲成分;二者結閤的方法組閤瞭這兩者的優點,使得幅值較大、較小的譟聲成分都能較好地消除,同時還提高瞭相似度和平滑度指標,充分錶明小波包最佳基閾值與廣義形態濾波結閤的方法是一種更好的可見光近紅外光譜去譟方法.
대반사광잠수거진행거조시제고광보신식준학도적전제.전통시역평활화빈역거조방법존재제다결점,본문수차장엄의형태려파방법용우가견근홍외광보적거조처리,병제출기우소파포변환화수학형태학결합적광보거조방법.사용USGS광보고중적식피광보진행실험,채용신조비(SNR)、균방오차근(RMSE)、파형상사도(NCC)화평활도(SR)사개지표래평고거조효과.결과표명,소파포최가기역치법화엄의형태려파법도능교호지보지파형화평활도,엄의형태려파법능교호지소제폭치교대적수궤조성,단기대련속수궤조성중폭치교소적조성성분불능유효소제;이소파포최가기역치법불능유효소제폭치교대적조성성분;이자결합적방법조합료저량자적우점,사득폭치교대、교소적조성성분도능교호지소제,동시환제고료상사도화평활도지표,충분표명소파포최가기역치여엄의형태려파결합적방법시일충경호적가견광근홍외광보거조방법.
The present study introduced the generalized morphological filter into the denoising of visible and near infrared spectra for the first time,and provided a new method for denoising the reflectance spectra by combining mathematical morphology methods with the wavelet packet transformation.The authors used vegetable spectra from USGS spectral library as the reference spectra,and obtained the noised spectra by adding noises with different signal-to-noise ratios to the referenced spectra.The resuits were evaluated by signal-to-noise ratio (SNR),root mean squared error (RMSE),normalized correlation coefficient (NCC) and smoothness ratio (SR) of the denoised spectra.The authors'results showed that both the thresholding on wavelet packet decomposition best bases method and the generalized morphological filter method could maintain the spectral shape and the spectral smoothness after denoising.The generalized morphological filter method can remove larger amplitude random noise whereas the continuous small amplitude random noise could not be removed well.Hence,the denoised spectra were not smooth.Nevertheless,the denoised spectra using the thresholding on the best base groups of wavelet packet decomposition method were smooth,but the larger amplitude noise could not be removed completely.The authors'method by combining the two methods has the merits of the two methods but removing their defects.The results showed that both large and small amplitude noise could be removed completely,meanwhile the normalized correlation coefficient (NCC) and smoothness ratio (SR) were improved,which indicated that the authors' method is superior to other methods in denoising visible and near infrared spectra.