湖南大学学报(自然科学版)
湖南大學學報(自然科學版)
호남대학학보(자연과학판)
JOURNAL OF HUNAN UNIVERSITY(NATURAL SCIENCES EDITION)
2010年
2期
74-78
,共5页
正交阵列%极大无关组%Rao-界%Griesmer界
正交陣列%極大無關組%Rao-界%Griesmer界
정교진렬%겁대무관조%Rao-계%Griesmer계
orthogonal array%maximal linearly independent array%Rao-bound%Griesmer-bound
构造了三类新的正交阵列,它们分别达到Rao-界和文献[9]中提到的两个界.另外,利用这些正交阵列可以构造一些相应的线性码,这些线性码还能够达到编码理论中的Griesmer界.
構造瞭三類新的正交陣列,它們分彆達到Rao-界和文獻[9]中提到的兩箇界.另外,利用這些正交陣列可以構造一些相應的線性碼,這些線性碼還能夠達到編碼理論中的Griesmer界.
구조료삼류신적정교진렬,타문분별체도Rao-계화문헌[9]중제도적량개계.령외,이용저사정교진렬가이구조일사상응적선성마,저사선성마환능구체도편마이론중적Griesmer계.
Three new classes of orthogonal arrays that meet the equality of Rao-bound and other two bounds proposed in [9] were constructed, and these resulting orthogonal arrays can construct linear codes that reach the equality of Griesmer bound in Error-Correct Code Theory.