西安交通大学学报
西安交通大學學報
서안교통대학학보
JOURNAL OF XI'AN JIAOTONG UNIVERSITY
2010年
5期
60-65
,共6页
同步回转%混输泵%动力特性%相对偏心距%长径比
同步迴轉%混輸泵%動力特性%相對偏心距%長徑比
동보회전%혼수빙%동력특성%상대편심거%장경비
synchronal rotary%multiphase pump%dynamic characteristic%relative eccentricity%slenderness ratio
提出了一种新型的同步回转式混输泵,介绍了该混输泵的结构特点与工作原理.在对其关键运动部件建立动力学模型的基础上,研究了该混输泵的动力学特性,分析了主要结构参数对泵的动力学性能的影响,并对样机进行了功率特性测试.研究结果表明:同步回转式混输泵具有结构简单、运转平稳、制造成本低等优点;转子和油缸之间的相对角速度低于转子角速度的10%;滑板受力随相对偏心距和长径比的减小而减小,转子轴承与油缸轴承的载荷随相对偏心距的增大和长径比的减小而减小;在0.5~2.5 MPa的工作压力范围内,样机的实测功率与理论计算值的相对偏差为17.3%~35.1%,其中摩擦功耗所占比例较大,需进一步改进.
提齣瞭一種新型的同步迴轉式混輸泵,介紹瞭該混輸泵的結構特點與工作原理.在對其關鍵運動部件建立動力學模型的基礎上,研究瞭該混輸泵的動力學特性,分析瞭主要結構參數對泵的動力學性能的影響,併對樣機進行瞭功率特性測試.研究結果錶明:同步迴轉式混輸泵具有結構簡單、運轉平穩、製造成本低等優點;轉子和油缸之間的相對角速度低于轉子角速度的10%;滑闆受力隨相對偏心距和長徑比的減小而減小,轉子軸承與油缸軸承的載荷隨相對偏心距的增大和長徑比的減小而減小;在0.5~2.5 MPa的工作壓力範圍內,樣機的實測功率與理論計算值的相對偏差為17.3%~35.1%,其中摩抆功耗所佔比例較大,需進一步改進.
제출료일충신형적동보회전식혼수빙,개소료해혼수빙적결구특점여공작원리.재대기관건운동부건건립동역학모형적기출상,연구료해혼수빙적동역학특성,분석료주요결구삼수대빙적동역학성능적영향,병대양궤진행료공솔특성측시.연구결과표명:동보회전식혼수빙구유결구간단、운전평은、제조성본저등우점;전자화유항지간적상대각속도저우전자각속도적10%;활판수력수상대편심거화장경비적감소이감소,전자축승여유항축승적재하수상대편심거적증대화장경비적감소이감소;재0.5~2.5 MPa적공작압력범위내,양궤적실측공솔여이론계산치적상대편차위17.3%~35.1%,기중마찰공모소점비례교대,수진일보개진.
A new synchronal rotary multiphase pump(SRMP) is proposed and its structural characteristics and working principle are described. With the dynamic model established for the key moving parts, the dynamic characteristics of the pump and the influence of main structural parameters on the dynamic performance are investigated. The power input of a prototype of the SRMP is tested experimentally. The results show that the pump has the advantage of simple structure and smooth running. The relative angular velocity between the rotor and the oil cylinder is less than 10% of the rotor angular velocity. The forces on the pump slide vane decrease with the decrease of the relative eccentricity and the slenderness ratio. The loads on bearings decrease with the increase of the relative eccentricity or the decrease of the slenderness ratio. Additionally in the working pressure range of 0.5-2.5 MPa, the deviation of the power input tested and calculated is in the range of 17.3%-35.1%, the friction loss in the prototype occupies a large part of the total power consumption. It seems that the pump needs to be improved further.