应用光学
應用光學
응용광학
JOURNAL OF APPLIED OPTICS
2009年
4期
596-600
,共5页
相空间%维格纳分布%分数傅里叶变换%一阶光学系统
相空間%維格納分佈%分數傅裏葉變換%一階光學繫統
상공간%유격납분포%분수부리협변환%일계광학계통
phase space%Wigner distribution%fractional Fourier transform%first-order optical system
在维格纳相空间中,通过将一阶光学系统的传输矩阵分解为坐标旋转、比例缩放和啁啾矩阵的组合,得到了一阶光学系统在空域的分数傅里叶表示.结果表明:任意一阶光学系统均可表示为经过比例缩放和二次相位调制的分数傅里叶变换.通过将输入输出光场在相空间中作π/2角旋转,得到了一阶光学系统在频域的传输矩阵和衍射积分公式,进而得到了一阶光学系统在频域的分数傅里叶表示.比较空域和频域一阶光学系统的相空间变换矩阵,说明2个系统本质上属同一变换在不同基坐标下的表示,并推导出了光学系统在空域和频域具有相同分数傅里叶变换的条件.
在維格納相空間中,通過將一階光學繫統的傳輸矩陣分解為坐標鏇轉、比例縮放和啁啾矩陣的組閤,得到瞭一階光學繫統在空域的分數傅裏葉錶示.結果錶明:任意一階光學繫統均可錶示為經過比例縮放和二次相位調製的分數傅裏葉變換.通過將輸入輸齣光場在相空間中作π/2角鏇轉,得到瞭一階光學繫統在頻域的傳輸矩陣和衍射積分公式,進而得到瞭一階光學繫統在頻域的分數傅裏葉錶示.比較空域和頻域一階光學繫統的相空間變換矩陣,說明2箇繫統本質上屬同一變換在不同基坐標下的錶示,併推導齣瞭光學繫統在空域和頻域具有相同分數傅裏葉變換的條件.
재유격납상공간중,통과장일계광학계통적전수구진분해위좌표선전、비례축방화조추구진적조합,득도료일계광학계통재공역적분수부리협표시.결과표명:임의일계광학계통균가표시위경과비례축방화이차상위조제적분수부리협변환.통과장수입수출광장재상공간중작π/2각선전,득도료일계광학계통재빈역적전수구진화연사적분공식,진이득도료일계광학계통재빈역적분수부리협표시.비교공역화빈역일계광학계통적상공간변환구진,설명2개계통본질상속동일변환재불동기좌표하적표시,병추도출료광학계통재공역화빈역구유상동분수부리협변환적조건.
The fractional Fourier express of the first-order optical system was derived by decomposing the transfer matrices of firstorder optical system into coordinate rotation matrix, scale matrix and chirp matrix in Wigner phase space. The results show that an arbitrary first-order optical system can be expressed as the scaled and chirp modulation fractional Fourier transform. The transfer matrix and diffractive integral formula in frequency domain were acquired by rotating the input and output optical field π/2 in the phase space. Accordingly the fractional Fourier transforms of a first-order optical system in frequency domain were also obtained. By comparing the transfer matrices of two first-order optical systems in space and frequency domains respectively, it is found that the two first-order optical systems in different domain can be expressed as two different expressions of one and the same transfer based on different coordinates. At last the condition is derived for an optical system to implement the fractional Fourier transform in space and frequency domains with the same order.