东南大学学报(自然科学版)
東南大學學報(自然科學版)
동남대학학보(자연과학판)
JOURNAL OF SOUTHEAST UNIVERSITY
2010年
1期
117-122
,共6页
涂刚毅%金世俊%祝雪芬%宋爱国
塗剛毅%金世俊%祝雪芬%宋愛國
도강의%금세준%축설분%송애국
移动机器人%同步定位与地图创建%粒子滤波器%栅格地图
移動機器人%同步定位與地圖創建%粒子濾波器%柵格地圖
이동궤기인%동보정위여지도창건%입자려파기%책격지도
mobile robot%simultaneous localization and mapping%particle filter%grid map
针对FastSLAM算法对传感器精度要求较高,不适用于方向性差的超声传感器问题,提出了一种基于超声概率栅格地图环境特征点提取匹配的移动机器人粒子滤波同时定位与地图创建(SLAM)算法.该算法可分解为机器人位姿估计和环境路标估计2个部分.基于蒙特卡罗定位原理利用粒子滤波算法对机器人运动轨迹进行估计;在建立全局超声概率栅格地图的基础上,利用概率栅格地图环境特征提取算法对环境路标坐标进行估计.实验证明,该算法较好地解决了超声测距传感器由于散射角大带来的特征点估计不准的问题,对环境路标和机器人轨迹的估计都比较准确.并对移动机器人累计误差进行了有效的补偿,减少了由于累积误差造成的移动机器人轨迹扭曲失真.
針對FastSLAM算法對傳感器精度要求較高,不適用于方嚮性差的超聲傳感器問題,提齣瞭一種基于超聲概率柵格地圖環境特徵點提取匹配的移動機器人粒子濾波同時定位與地圖創建(SLAM)算法.該算法可分解為機器人位姿估計和環境路標估計2箇部分.基于矇特卡囉定位原理利用粒子濾波算法對機器人運動軌跡進行估計;在建立全跼超聲概率柵格地圖的基礎上,利用概率柵格地圖環境特徵提取算法對環境路標坐標進行估計.實驗證明,該算法較好地解決瞭超聲測距傳感器由于散射角大帶來的特徵點估計不準的問題,對環境路標和機器人軌跡的估計都比較準確.併對移動機器人纍計誤差進行瞭有效的補償,減少瞭由于纍積誤差造成的移動機器人軌跡扭麯失真.
침대FastSLAM산법대전감기정도요구교고,불괄용우방향성차적초성전감기문제,제출료일충기우초성개솔책격지도배경특정점제취필배적이동궤기인입자려파동시정위여지도창건(SLAM)산법.해산법가분해위궤기인위자고계화배경로표고계2개부분.기우몽특잡라정위원리이용입자려파산법대궤기인운동궤적진행고계;재건립전국초성개솔책격지도적기출상,이용개솔책격지도배경특정제취산법대배경로표좌표진행고계.실험증명,해산법교호지해결료초성측거전감기유우산사각대대래적특정점고계불준적문제,대배경로표화궤기인궤적적고계도비교준학.병대이동궤기인루계오차진행료유효적보상,감소료유우루적오차조성적이동궤기인궤적뉴곡실진.
Focusing on the limited application of FastSLAM algorithm due to its high accuracy requir-ment for sensor and unfitness for ultrasonic sensor with poor directivity, a simultaneous localization and mapping (SLAM) algorithm utilizing particle filter is provided, which is based on ultrasonic probability grid map feature points extraction and matching. This algorithm consists of robot pose esti-mation and environment landmark estimation. Particle filters are applied to estimate the robot trajectory according to Monte Carlo methods. Based on global ultrasonic probabilistic grid map, the environment landmark position is observed by environment feature extraction algorithm. The effectiveness of the proposed algorithm is validated by experimental result. The estimation accuracy of feature point posi-tion as well as environment landmark are improved. The cumulative error of the robot is compensated effectively and the mobile robot trajectory distortion is reduced.