中国有色金属学报
中國有色金屬學報
중국유색금속학보
THE CHINESE JOURNAL OF NONFERROUS METALS
2010年
2期
244-249
,共6页
SiC/Al复合材料%屈服应力%载荷转移%Weibull统计
SiC/Al複閤材料%屈服應力%載荷轉移%Weibull統計
SiC/Al복합재료%굴복응력%재하전이%Weibull통계
SiC/Al composites%yield stress%load transferring%Weibull statistics
基于修正的剪切滞后模型、Eshelby等效夹杂理论以及Weibull统计分布,发展SiC增强铝基复合材料屈服应力的本构模型.选取多种铝合金,包括工业纯铝、Al-Mg-Si合金、Al-Cu-Mg合金以及Al-Zn-Mg 合金,作为复合材料的基体材料进行屈服应力的测试,以验证模型的准确性.模型考虑变形过程中SiC颗粒失效(包括颗粒脱粘和颗粒断裂)对复合材料屈服应力的影响.结果表明:复合材料的屈服应力随着SiC颗粒体积分数的增加而增加,但随着SiC颗粒尺寸的增加而降低;该力学模型比传统的修正剪切滞后模型更加准确,这表明SiC颗粒失效对复合材料的屈服应力产生重要的影响.
基于脩正的剪切滯後模型、Eshelby等效夾雜理論以及Weibull統計分佈,髮展SiC增彊鋁基複閤材料屈服應力的本構模型.選取多種鋁閤金,包括工業純鋁、Al-Mg-Si閤金、Al-Cu-Mg閤金以及Al-Zn-Mg 閤金,作為複閤材料的基體材料進行屈服應力的測試,以驗證模型的準確性.模型攷慮變形過程中SiC顆粒失效(包括顆粒脫粘和顆粒斷裂)對複閤材料屈服應力的影響.結果錶明:複閤材料的屈服應力隨著SiC顆粒體積分數的增加而增加,但隨著SiC顆粒呎吋的增加而降低;該力學模型比傳統的脩正剪切滯後模型更加準確,這錶明SiC顆粒失效對複閤材料的屈服應力產生重要的影響.
기우수정적전절체후모형、Eshelby등효협잡이론이급Weibull통계분포,발전SiC증강려기복합재료굴복응력적본구모형.선취다충려합금,포괄공업순려、Al-Mg-Si합금、Al-Cu-Mg합금이급Al-Zn-Mg 합금,작위복합재료적기체재료진행굴복응력적측시,이험증모형적준학성.모형고필변형과정중SiC과립실효(포괄과립탈점화과립단렬)대복합재료굴복응력적영향.결과표명:복합재료적굴복응력수착SiC과립체적분수적증가이증가,단수착SiC과립척촌적증가이강저;해역학모형비전통적수정전절체후모형경가준학,저표명SiC과립실효대복합재료적굴복응력산생중요적영향.
A constitutive model for the yield stress of SiC reinforced aluminum alloy composites was developed based on the modified shear lag model, Eshelby's equivalent inclusion approach and Weibull statistics. Several types of aluminum alloys including industry pure aluminum, Al-Mg-Si alloy, Al-Cu-Mg alloy and Al-Zn-Mg alloy were chosen as the matrix materials to verify the accuracy of the model. The failure of the SiC particles including particle debonding and cracking on the yield stress of composites during the deformation process was considered in the model. The results show that the yield stress of the composites increases with increasing volume fraction of SiC particles, but it decreases with increasing size of the SiC particles. The prediction of the present developed constitutive model agrees much better with the experimental data than the traditional modified shear lag model, which indicates that the failure of SiC particles has important effect on the yield stress of the SiC reinforced aluminum alloy composites.