电网技术
電網技術
전망기술
POWER SYSTEM TECHNOLOGY
2013年
8期
2165-2172
,共8页
可靠性%概率密度函数%参数不确定性
可靠性%概率密度函數%參數不確定性
가고성%개솔밀도함수%삼수불학정성
reliability%probability density function%parameter uncertainty
从概率分布角度刻画电网可靠性的随机分布规律,并对概率分布特征受参数不确定性的影响开展研究,克服了常规电网可靠性评估中在参数不确定性影响研究上仅仅囿于期望值指标的缺陷。推导了参数不确定时元件故障前工作时间和故障后修复时间的边缘概率分布,为规避边缘分布函数过于复杂且难以解析计算的障碍,采用了数值积分对其进行离散化表征,并据此改进传统序贯蒙特卡洛算法,实现了计入参数不确定影响的电网可靠性指标的边缘概率分布计算,探索了参数不确定的电网可靠性概率分布特征研究的新思路。同时采用双循环蒙特卡洛仿真与所提方法在计算效率和计算时间上进行对比验证。通过对 RBTS 和 IEEE-RTS 79系统的评估分析,验证了所提方法的正确性和实用性。
從概率分佈角度刻畫電網可靠性的隨機分佈規律,併對概率分佈特徵受參數不確定性的影響開展研究,剋服瞭常規電網可靠性評估中在參數不確定性影響研究上僅僅囿于期望值指標的缺陷。推導瞭參數不確定時元件故障前工作時間和故障後脩複時間的邊緣概率分佈,為規避邊緣分佈函數過于複雜且難以解析計算的障礙,採用瞭數值積分對其進行離散化錶徵,併據此改進傳統序貫矇特卡洛算法,實現瞭計入參數不確定影響的電網可靠性指標的邊緣概率分佈計算,探索瞭參數不確定的電網可靠性概率分佈特徵研究的新思路。同時採用雙循環矇特卡洛倣真與所提方法在計算效率和計算時間上進行對比驗證。通過對 RBTS 和 IEEE-RTS 79繫統的評估分析,驗證瞭所提方法的正確性和實用性。
종개솔분포각도각화전망가고성적수궤분포규률,병대개솔분포특정수삼수불학정성적영향개전연구,극복료상규전망가고성평고중재삼수불학정성영향연구상부부유우기망치지표적결함。추도료삼수불학정시원건고장전공작시간화고장후수복시간적변연개솔분포,위규피변연분포함수과우복잡차난이해석계산적장애,채용료수치적분대기진행리산화표정,병거차개진전통서관몽특잡락산법,실현료계입삼수불학정영향적전망가고성지표적변연개솔분포계산,탐색료삼수불학정적전망가고성개솔분포특정연구적신사로。동시채용쌍순배몽특잡락방진여소제방법재계산효솔화계산시간상진행대비험증。통과대 RBTS 화 IEEE-RTS 79계통적평고분석,험증료소제방법적정학성화실용성。
The influence of parameter uncertainty on probability distribution characteristics of bulk power system reliability is researched, which is usually done only for expected indices of bulk power reliability in traditional power system reliability. The marginal probability distributions of pre-failure working time and post-failure repairing time of the component under parameter uncertainty are derived; to avoid the obstacles that the marginal distribution function is too complex to analyze and calculate, the numerical integration is utilized to discretize and characterize the marginal distribution function, and on this basis traditional sequential Monte Carlo algorithm is improved to implement the calculation of marginal probability distribution of reliability indices of bulk power system, in which the parameter uncertainty is taken into account, and the new thinking for the research on probability distribution characteristics of power system reliability under parameter uncertainty is explored. Meanwhile the comparison validation of computation time and efficiency by the proposed method with those by dual-loop Monte Carlo simulation is performed. The correctness and validity of the proposed method are validated by reliability evaluation results of RBTS and IEEE RTS79.