电网技术
電網技術
전망기술
POWER SYSTEM TECHNOLOGY
2013年
8期
2094-2100
,共7页
王元章%李智华%吴春华%周笛青%付立
王元章%李智華%吳春華%週笛青%付立
왕원장%리지화%오춘화%주적청%부립
光伏组件%在线诊断%短路%异常老化%BP神经网络
光伏組件%在線診斷%短路%異常老化%BP神經網絡
광복조건%재선진단%단로%이상노화%BP신경망락
PV module%online diagnosis%short-circuit%abnormal degradation%BP neural network
为了提高光伏系统的发电效率,同时降低人工维护的成本,提出了一种基于 BP(back propagation)神经网络的光伏组件在线故障诊断策略;分析了光伏组件短路和异常老化故障的成因,并在 Matlab 中对光伏组件故障状态下的输出特性进行了仿真研究。根据仿真结果并结合光伏组件的数学模型,总结了光伏组件的故障规律,建立了BP神经网络故障诊断模型及模拟光伏组件各种故障的仿真模型。用该模型采集了适合神经网络训练的样本,并对神经网络诊断模型进行了训练。结合光伏功率优化器,进行了组件在线故障诊断的仿真和实验研究,结果验证了文中方法的正确性、有效性和环境适应性。
為瞭提高光伏繫統的髮電效率,同時降低人工維護的成本,提齣瞭一種基于 BP(back propagation)神經網絡的光伏組件在線故障診斷策略;分析瞭光伏組件短路和異常老化故障的成因,併在 Matlab 中對光伏組件故障狀態下的輸齣特性進行瞭倣真研究。根據倣真結果併結閤光伏組件的數學模型,總結瞭光伏組件的故障規律,建立瞭BP神經網絡故障診斷模型及模擬光伏組件各種故障的倣真模型。用該模型採集瞭適閤神經網絡訓練的樣本,併對神經網絡診斷模型進行瞭訓練。結閤光伏功率優化器,進行瞭組件在線故障診斷的倣真和實驗研究,結果驗證瞭文中方法的正確性、有效性和環境適應性。
위료제고광복계통적발전효솔,동시강저인공유호적성본,제출료일충기우 BP(back propagation)신경망락적광복조건재선고장진단책략;분석료광복조건단로화이상노화고장적성인,병재 Matlab 중대광복조건고장상태하적수출특성진행료방진연구。근거방진결과병결합광복조건적수학모형,총결료광복조건적고장규률,건립료BP신경망락고장진단모형급모의광복조건각충고장적방진모형。용해모형채집료괄합신경망락훈련적양본,병대신경망락진단모형진행료훈련。결합광복공솔우화기,진행료조건재선고장진단적방진화실험연구,결과험증료문중방법적정학성、유효성화배경괄응성。
To improve generating efficiency of photovoltaic (PV) generation system and decrease the cost for its artificial maintenance, based on back propagation (BP) neural network (NN) an online fault diagnosis strategy for PV modules is proposed. The contributing factors causing short-circuit fault and abnormal aging of PV modules are analyzed and using Matlab the output characteristics of PV module under fault condition is simulated. According to simulation results and combining with mathematical model of PV module, the fault patterns of PV module are summarized, and a BPNN based fault diagnosis model for PV modules is built and a model to simulate various faults occurred in PV modules is established. The samples suitable for the training of BPNN are collected and the BPNN based fault diagnosis model is trained. Combining with PV power optimizer the simulation and experimental research on online fault diagnosis of PV modules are performed, and results from simulation and research show that the proposed fault diagnosis strategy is correct, effective and possesses environmental suitability.