微型机与应用
微型機與應用
미형궤여응용
MICROCOMPUTER & ITS APPLICATIONS
2014年
11期
67-70,74
,共5页
粒子群优化算法%统一计算设备架构%邻域拓扑结构%计算效率
粒子群優化算法%統一計算設備架構%鄰域拓撲結構%計算效率
입자군우화산법%통일계산설비가구%린역탁복결구%계산효솔
particle swarm optimization%Compute Unified Device Architecture%neighborhood topology%computational efficiency
针对粒子群优化算法的邻域拓扑结构对算法性能有重要影响、PSO 算法在 CPU 上求解最优化问题时计算效率低下这两点,分析了邻域拓扑结构改变时 PSO 算法的并行特征,实现了环形和星形拓扑结构的PSO算法在统一计算设备架构上的寻优过程。分别在CPU和GPU上用两种PSO算法对7个benchmark测试函数进行求解。程序仿真结果显示,基于CUDA的PSO算法计算效率均大大高于CPU;同时发现,GPU显著地加快了星形结构PSO算法的收敛速度,而对环形结构PSO算法影响不大。
針對粒子群優化算法的鄰域拓撲結構對算法性能有重要影響、PSO 算法在 CPU 上求解最優化問題時計算效率低下這兩點,分析瞭鄰域拓撲結構改變時 PSO 算法的併行特徵,實現瞭環形和星形拓撲結構的PSO算法在統一計算設備架構上的尋優過程。分彆在CPU和GPU上用兩種PSO算法對7箇benchmark測試函數進行求解。程序倣真結果顯示,基于CUDA的PSO算法計算效率均大大高于CPU;同時髮現,GPU顯著地加快瞭星形結構PSO算法的收斂速度,而對環形結構PSO算法影響不大。
침대입자군우화산법적린역탁복결구대산법성능유중요영향、PSO 산법재 CPU 상구해최우화문제시계산효솔저하저량점,분석료린역탁복결구개변시 PSO 산법적병행특정,실현료배형화성형탁복결구적PSO산법재통일계산설비가구상적심우과정。분별재CPU화GPU상용량충PSO산법대7개benchmark측시함수진행구해。정서방진결과현시,기우CUDA적PSO산법계산효솔균대대고우CPU;동시발현,GPU현저지가쾌료성형결구PSO산법적수렴속도,이대배형결구PSO산법영향불대。
Neighborhood topology has an important influence on the performance of particle swarm optimization algorithm. The algorithm for solving optimization problems on the CPU is very inefficient. For these two point, analyzing parallel characteristic of PSO algorithm when neighborhood topology changes and achieving a ring and star topologies PSO algorithm on compute unified device architecture(CUDA) on the optimization process. Solving 7 benchmark test functions on the CPU and the GPU PSO algorithm respectively, the program simulation results show that PSO algorithm based on CUDA computing efficiency is significantly higher than CPU. In the meantime, GPU accelerates dramatically star PSO algorithm convergence speed, while the ring structure PSO algorithm have little effect.