计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2013年
15期
119-122
,共4页
酉变换%多小波%浮点数编码%遗传算法%消噪变异
酉變換%多小波%浮點數編碼%遺傳算法%消譟變異
유변환%다소파%부점수편마%유전산법%소조변이
unitary transform%multiwavelets%floating point representation%Genetic Algorithm(GA)%denoising mutation
浮点数编码具有精度高、便于高维大空间搜索的优点,在函数优化和约束优化领域明显有效于其他编码。浮点数编码遗传算法在操作环境中产生的噪音和对算法性能的影响尚不被人们所认识。将小波用于浮点数编码遗传算法的消噪变异是解决该问题的有效途径。单一小波对浮点数编码消噪变异泛化能力低,且对浮点数编码遗传算法性能改进有一定的局限性。研究证明了用酉变换可构造正交多小波,将正交多小波用于浮点数编码遗传算法的消噪变异,提出了FGAMW方法,并进行了实验。理论研究和实验结果表明,提出的FGAMW方法理论上是可靠的,技术上是可行的,对于拓展浮点数编码遗传算法的应用空间具有积极的意义。
浮點數編碼具有精度高、便于高維大空間搜索的優點,在函數優化和約束優化領域明顯有效于其他編碼。浮點數編碼遺傳算法在操作環境中產生的譟音和對算法性能的影響尚不被人們所認識。將小波用于浮點數編碼遺傳算法的消譟變異是解決該問題的有效途徑。單一小波對浮點數編碼消譟變異汎化能力低,且對浮點數編碼遺傳算法性能改進有一定的跼限性。研究證明瞭用酉變換可構造正交多小波,將正交多小波用于浮點數編碼遺傳算法的消譟變異,提齣瞭FGAMW方法,併進行瞭實驗。理論研究和實驗結果錶明,提齣的FGAMW方法理論上是可靠的,技術上是可行的,對于拓展浮點數編碼遺傳算法的應用空間具有積極的意義。
부점수편마구유정도고、편우고유대공간수색적우점,재함수우화화약속우화영역명현유효우기타편마。부점수편마유전산법재조작배경중산생적조음화대산법성능적영향상불피인문소인식。장소파용우부점수편마유전산법적소조변이시해결해문제적유효도경。단일소파대부점수편마소조변이범화능력저,차대부점수편마유전산법성능개진유일정적국한성。연구증명료용유변환가구조정교다소파,장정교다소파용우부점수편마유전산법적소조변이,제출료FGAMW방법,병진행료실험。이론연구화실험결과표명,제출적FGAMW방법이론상시가고적,기술상시가행적,대우탁전부점수편마유전산법적응용공간구유적겁적의의。
Floating Point Representation(FPR) has the advantage of higher precision and easy to search in high-dimension space. FPR is in evidence superior to other codes in fields of function optimization and restriction optimization. It is not known by researchers that noise is generated by FPR Genetic Algorithm(FPRGA)in operation environment and how it affectes on the algorithm performance. It is an available approach of solving the problem that wavelet is used to FPRGA denoising mutation. Single wavelet is of lower generalization ability in FPRGA denoising mutation. It is of a limitation of improving performance of FPRGA. The paper presents a Floating point representation Genetic Algorithm based on Multiwavelets in terms of a novel trans-formation(FGAMW). It is proved that orthogonal multiwavelet is constructed by unitary transform. Orthogonal multiwavelet is used to denoise mutation in FPRGA. The experiments are done in it. The results of the theoretic research and the experiments indi-cate that FGAMW is reliable in theory and feasible in technique. It is of active significance to extend application of FPRGA.