中国电机工程学报
中國電機工程學報
중국전궤공정학보
ZHONGGUO DIANJI GONGCHENG XUEBAO
2013年
21期
90-98
,共9页
刘春元%余海涛%胡敏强%刘强%陈中显
劉春元%餘海濤%鬍敏彊%劉彊%陳中顯
류춘원%여해도%호민강%류강%진중현
波浪能%圆筒型永磁直线电机%有限元分析%转换%反电动势
波浪能%圓筒型永磁直線電機%有限元分析%轉換%反電動勢
파랑능%원통형영자직선전궤%유한원분석%전환%반전동세
wave energy%permanent magnet tubular linear generator (PMTLG)%finite element analysis%conversion%electromotive force waveform
针对波浪发电系统中大气隙永磁电机功率密度低的缺点,提出了一种将动子(永磁体)置于外部,永磁体采用准Halbach结构的圆筒型永磁直线电机,该电机可以增大功率密度,且提高气隙磁场强度的正弦程度。在体积相同的前提下,外转子永磁直线电机的功率密度为内转子结构的6~8倍。准Halbach充磁结构的气隙磁密为径向充磁结构的1.39倍。为了防止海水的腐蚀,将定子用环氧树脂密封。采用二维有限元分析优化其电机结构,分析了空载反电动势、负载反电动势、定位力以及损耗。研究表明凸定子结构能有效减小定位力。加工样机,在波浪水池中进行空载以及负载试验,通过仿真分析和实验结果可知,该电机具有功率密度大,与浮子连接方便的特点,能够很好地应用在波浪发电系统中。
針對波浪髮電繫統中大氣隙永磁電機功率密度低的缺點,提齣瞭一種將動子(永磁體)置于外部,永磁體採用準Halbach結構的圓筒型永磁直線電機,該電機可以增大功率密度,且提高氣隙磁場彊度的正絃程度。在體積相同的前提下,外轉子永磁直線電機的功率密度為內轉子結構的6~8倍。準Halbach充磁結構的氣隙磁密為徑嚮充磁結構的1.39倍。為瞭防止海水的腐蝕,將定子用環氧樹脂密封。採用二維有限元分析優化其電機結構,分析瞭空載反電動勢、負載反電動勢、定位力以及損耗。研究錶明凸定子結構能有效減小定位力。加工樣機,在波浪水池中進行空載以及負載試驗,通過倣真分析和實驗結果可知,該電機具有功率密度大,與浮子連接方便的特點,能夠很好地應用在波浪髮電繫統中。
침대파랑발전계통중대기극영자전궤공솔밀도저적결점,제출료일충장동자(영자체)치우외부,영자체채용준Halbach결구적원통형영자직선전궤,해전궤가이증대공솔밀도,차제고기극자장강도적정현정도。재체적상동적전제하,외전자영자직선전궤적공솔밀도위내전자결구적6~8배。준Halbach충자결구적기극자밀위경향충자결구적1.39배。위료방지해수적부식,장정자용배양수지밀봉。채용이유유한원분석우화기전궤결구,분석료공재반전동세、부재반전동세、정위력이급손모。연구표명철정자결구능유효감소정위력。가공양궤,재파랑수지중진행공재이급부재시험,통과방진분석화실험결과가지,해전궤구유공솔밀도대,여부자련접방편적특점,능구흔호지응용재파랑발전계통중。
According to the disadvantage that there is a low power density due to the large air-gap for permanent magnet generators, a permanent magnet tubular linear generator (PMTLG) which has an external permanent magnet for enhancing its power density and sinusoidal waveform is proposed to extract wave energy. Quasi-Halbach magnetization structure is adopted for decreasing manufacture costs. Power density of external PMTLG is about 6~8 times as internal one in the same volume. The air gap flux density for quasi-Halbach magnetization is 1.39 times as radial magnetization. Its stator is sealed by epoxy resin in order to prevent it from the corrosion and dampness of the seawater. The structure of the PMTLG is optimized by using the two dimensional finite elements analysis. No-load electromotive forces, load electromotive forces and losses are analyzed respectively. Finally, a prototype is manufactured to verify that the PMTLG has higher power density, and easy connection with buoy. Thus, it can be well applied in wave energy conversion.