中国电机工程学报
中國電機工程學報
중국전궤공정학보
ZHONGGUO DIANJI GONGCHENG XUEBAO
2013年
22期
191-200
,共10页
张施令%彭宗仁%刘鹏%胡伟%王浩然
張施令%彭宗仁%劉鵬%鬍偉%王浩然
장시령%팽종인%류붕%호위%왕호연
高压干式直流套管%温度梯度%有限元%电热耦合%优化
高壓榦式直流套管%溫度梯度%有限元%電熱耦閤%優化
고압간식직류투관%온도제도%유한원%전열우합%우화
RIP HVDC bushings%temperature gradient%finite element method (FEM)%electro-thermal coupling%optimization
高压干式直流套管运行中内部径向电场、温度场分布是表征套管性能的重要参数,关系着套管芯子的长期安全稳定运行。套管中心导杆欧姆发热和绝缘介质焦耳发热是芯子内部存在温度梯度分布的主要原因,且绝缘介质电导率与温度密切相关,而直流条件下电场分布又取决于电导率,因此高压直流套管电场与温度场的计算是一个相互耦合的过程。鉴于此,首先建立套管芯体圆柱模型,并进行半解析理论公式推导,实现了电场和温度场的解耦计算。在此基础上,提出了有限元电热耦合模型和计算流程,并将电热耦合理论模型与有限元模型在实际套管结构下的电场、温度场计算结果进行对比,两者吻合较好,证明了有限元电热耦合模型的有效性。进一步将有限元模型推广到与实际套管芯子结构相同的圆锥模型,计算了某干式直流套管芯子内部电场、温度场分布,并对芯子外轮廓结构进行了优化设计。优化目标为在额定运行条件下,套管最热点温度接近90℃,且套管径向场强最大值约为3.5 kV/mm,分布较均匀。最后对该干式直流套管样机进行了温升和电性能试验,证明了优化设计方案的可行性。提出的电热耦合理论、有限元模型,以及电热解耦计算方法和芯子优化设计流程可以为高压干式直流套管的研制提供参考。
高壓榦式直流套管運行中內部徑嚮電場、溫度場分佈是錶徵套管性能的重要參數,關繫著套管芯子的長期安全穩定運行。套管中心導桿歐姆髮熱和絕緣介質焦耳髮熱是芯子內部存在溫度梯度分佈的主要原因,且絕緣介質電導率與溫度密切相關,而直流條件下電場分佈又取決于電導率,因此高壓直流套管電場與溫度場的計算是一箇相互耦閤的過程。鑒于此,首先建立套管芯體圓柱模型,併進行半解析理論公式推導,實現瞭電場和溫度場的解耦計算。在此基礎上,提齣瞭有限元電熱耦閤模型和計算流程,併將電熱耦閤理論模型與有限元模型在實際套管結構下的電場、溫度場計算結果進行對比,兩者吻閤較好,證明瞭有限元電熱耦閤模型的有效性。進一步將有限元模型推廣到與實際套管芯子結構相同的圓錐模型,計算瞭某榦式直流套管芯子內部電場、溫度場分佈,併對芯子外輪廓結構進行瞭優化設計。優化目標為在額定運行條件下,套管最熱點溫度接近90℃,且套管徑嚮場彊最大值約為3.5 kV/mm,分佈較均勻。最後對該榦式直流套管樣機進行瞭溫升和電性能試驗,證明瞭優化設計方案的可行性。提齣的電熱耦閤理論、有限元模型,以及電熱解耦計算方法和芯子優化設計流程可以為高壓榦式直流套管的研製提供參攷。
고압간식직류투관운행중내부경향전장、온도장분포시표정투관성능적중요삼수,관계착투관심자적장기안전은정운행。투관중심도간구모발열화절연개질초이발열시심자내부존재온도제도분포적주요원인,차절연개질전도솔여온도밀절상관,이직류조건하전장분포우취결우전도솔,인차고압직류투관전장여온도장적계산시일개상호우합적과정。감우차,수선건립투관심체원주모형,병진행반해석이론공식추도,실현료전장화온도장적해우계산。재차기출상,제출료유한원전열우합모형화계산류정,병장전열우합이론모형여유한원모형재실제투관결구하적전장、온도장계산결과진행대비,량자문합교호,증명료유한원전열우합모형적유효성。진일보장유한원모형추엄도여실제투관심자결구상동적원추모형,계산료모간식직류투관심자내부전장、온도장분포,병대심자외륜곽결구진행료우화설계。우화목표위재액정운행조건하,투관최열점온도접근90℃,차투관경향장강최대치약위3.5 kV/mm,분포교균균。최후대해간식직류투관양궤진행료온승화전성능시험,증명료우화설계방안적가행성。제출적전열우합이론、유한원모형,이급전열해우계산방법화심자우화설계류정가이위고압간식직류투관적연제제공삼고。
Distribution of radial electric and temperature field is an important parameter to characterize performance of resin impregnated paper (RIP) high voltage direct current (HVDC) bushings. Moreover, it has a direct connection with long-term operation performance of bushing condenser. Ohmic heating of inner conductor and joule heating of insulation medium can establish temperature gradient inside bushing condenser. In addition, conductivity of insulation media is closely related with temperature and E-field distribution depends on conductivity under static DC application, so computation of electric and temperature field in HVDC bushing is a mutual coupling process. In the paper, cylinder model of bushing condenser was established, and derivation of semi-analytical theory formula was also conducted to achieve decoupling calculation of electric and temperature field. Based on this, finite element electro-thermal coupling model and calculation process were proposed, and the results under these two models in actual bushing structure have been compared. The results are in good agreement which proving validity of finite element electro-thermal coupling model. Then finite element model was used in cone model which is much closer to actual condenser structure. Moreover, optimization design for condenser outer contour structure was also conducted to make sure that the hottest-spot temperature is close to 90℃ under rated operating condition, and maximum radial E-field strength is approximately equal to 3.5 kV/mm and distributed uniformly. Finally, temperature rise and electrical performance test were carried out on a RIP HVDC bushing prototype, which can verify the feasibility of optimized design. The electro-thermal coupling theory and FEM model proposed in this paper, as well as electro-thermal decoupling calculation method and condenser optimization design process have good theoretical guiding significance for development of higher voltage RIP DC bushings.