化学研究
化學研究
화학연구
CHEMICAL RESEARCHES
2013年
3期
281-287
,共7页
恒电位沉积法%氢氧化镍薄膜%玻碳电极%制备%L-赖氨酸%电催化活性
恆電位沉積法%氫氧化鎳薄膜%玻碳電極%製備%L-賴氨痠%電催化活性
항전위침적법%경양화얼박막%파탄전겁%제비%L-뢰안산%전최화활성
electrodeposition under potentiostatic condition%nickel hydroxide film%glassy car-bon electrode%preparation%L-lysine%electrocatalytic activity
采用恒电位沉积方法将氢氧化镍沉积到玻碳电极表面,得到稳定性高、催化活性好的氢氧化镍薄膜修饰玻碳电极;分析了影响薄膜形成过程的关键因素,确定了最佳薄膜制备方案;与此同时,将薄膜修饰玻碳电极用于生物样品 L-赖氨酸的氧化测定,并探讨了其催化作用机理.结果表明,所制备的氢氧化镍薄膜修饰玻碳电极表面发生电化学反应[Ni(O H )2→NiOO H ],从而促进电极表面的电子转移,实现对 L-赖氨酸的电催化作用.当L-赖氨酸的浓度在1.0×10-4~4.0×10-7mol/L范围内时,相应氧化峰电流与浓度呈线性关系,检出限达4.0×10-7 mol/L ;据此可方便地制备稳定性好且灵敏度高的电流型传感器.
採用恆電位沉積方法將氫氧化鎳沉積到玻碳電極錶麵,得到穩定性高、催化活性好的氫氧化鎳薄膜脩飾玻碳電極;分析瞭影響薄膜形成過程的關鍵因素,確定瞭最佳薄膜製備方案;與此同時,將薄膜脩飾玻碳電極用于生物樣品 L-賴氨痠的氧化測定,併探討瞭其催化作用機理.結果錶明,所製備的氫氧化鎳薄膜脩飾玻碳電極錶麵髮生電化學反應[Ni(O H )2→NiOO H ],從而促進電極錶麵的電子轉移,實現對 L-賴氨痠的電催化作用.噹L-賴氨痠的濃度在1.0×10-4~4.0×10-7mol/L範圍內時,相應氧化峰電流與濃度呈線性關繫,檢齣限達4.0×10-7 mol/L ;據此可方便地製備穩定性好且靈敏度高的電流型傳感器.
채용항전위침적방법장경양화얼침적도파탄전겁표면,득도은정성고、최화활성호적경양화얼박막수식파탄전겁;분석료영향박막형성과정적관건인소,학정료최가박막제비방안;여차동시,장박막수식파탄전겁용우생물양품 L-뢰안산적양화측정,병탐토료기최화작용궤리.결과표명,소제비적경양화얼박막수식파탄전겁표면발생전화학반응[Ni(O H )2→NiOO H ],종이촉진전겁표면적전자전이,실현대 L-뢰안산적전최화작용.당L-뢰안산적농도재1.0×10-4~4.0×10-7mol/L범위내시,상응양화봉전류여농도정선성관계,검출한체4.0×10-7 mol/L ;거차가방편지제비은정성호차령민도고적전류형전감기.
Nickel hydroxide was deposited on the surface of glassy carbon electrode by electro-deposition under potentiostatic conditions to afford a nickel hydroxide film-modified glassy car-bon electrode possessing good stability and electrocatalytic activity .The factors influencing the formation of the nickel hydroxide film were analyzed ,and the optimal condition for preparing desired nickel hydroxide film was established .In the meantime ,as-prepared glassy carbon elec-trode modified by nickel hydroxide film was adopted to determine the oxidation of L-lysine ,and the catalytic mechanism of the modified electrode was discussed .Results indicate that as-pre-pared modified glassy carbon electrode undergoes surface electrochemical reaction [Ni(O H )2 →NiOOH] thereby accelerating surface electron transfer and realizing electrocatalysis towards the oxidation of L-lysine .When the concentration of L-lysine is in the range of 1 .0 × 10-4 -4 .0 × 10-7 mol/L ,it is linearly proportional to relevant oxidation peak current ,and corresponding detect limit is as low as 4 .0 × 10-7 mol/L .T his makes it feasible to fabricate current-type sen-sors with good stability and sensitivity via a facile route .