气候与环境研究
氣候與環境研究
기후여배경연구
CLIMATIC AND ENVIRONMENTAL RESEARCH
2013年
4期
472-482
,共11页
李健%安俊岭%陈勇%屈玉
李健%安俊嶺%陳勇%屈玉
리건%안준령%진용%굴옥
NOx%PM2.5%应用情景%化学过程%WRF-CAMx模式
NOx%PM2.5%應用情景%化學過程%WRF-CAMx模式
NOx%PM2.5%응용정경%화학과정%WRF-CAMx모식
NOx%PM2.5%Applied scenarios%Chemical processes%WRF-CMAx model
针对京津冀地区主要大气污染物NOx(氮氧化物)和PM2.5(大气中粒径小于或等于2.5μm的颗粒物),应用柴油车尾气净化技术及中小锅炉烟气脱硝技术,并根据2015年和2030年我国能源规划,设计3种技术应用情景,采用WRF-CAMx耦合模式,对京津冀地区大气中NOx和PM2.5进行了应用情景模拟。结果表明,单独应用柴油车尾气净化技术后(方案1),北京、天津地区大气中的NOx浓度降低幅度达20%,河北地区降低5%;PM2.5的浓度降低幅度约10%;应用柴油车尾气净化技术和2015年能源规划情景(方案2),京津冀地区大气中NOx和PM2.5浓度的降低幅度均超过20%;应用柴油车尾气净化技术和2030年能源规划情景(方案3),该地区NOx浓度降低幅度与之相当,PM2.5浓度降低幅度超过30%。可见脱硝技术和清洁能源利用的有效性依赖于其应用比例。二次气粒转化的化学过程形成的硝酸盐、硫酸盐和铵盐对该地区空气中PM2.5浓度的贡献很大,冬、春、秋季硝酸盐最大贡献高达60%,夏、秋季硫酸盐最大贡献超过70%,铵盐四季最大贡献约25%。这说明PM2.5的主要前体物NOx、SO2、NH3、VOCs (Volatile Organic Compounds)、CO等均大幅度削减才能有效降低该地区空气中PM2.5浓度。
針對京津冀地區主要大氣汙染物NOx(氮氧化物)和PM2.5(大氣中粒徑小于或等于2.5μm的顆粒物),應用柴油車尾氣淨化技術及中小鍋爐煙氣脫硝技術,併根據2015年和2030年我國能源規劃,設計3種技術應用情景,採用WRF-CAMx耦閤模式,對京津冀地區大氣中NOx和PM2.5進行瞭應用情景模擬。結果錶明,單獨應用柴油車尾氣淨化技術後(方案1),北京、天津地區大氣中的NOx濃度降低幅度達20%,河北地區降低5%;PM2.5的濃度降低幅度約10%;應用柴油車尾氣淨化技術和2015年能源規劃情景(方案2),京津冀地區大氣中NOx和PM2.5濃度的降低幅度均超過20%;應用柴油車尾氣淨化技術和2030年能源規劃情景(方案3),該地區NOx濃度降低幅度與之相噹,PM2.5濃度降低幅度超過30%。可見脫硝技術和清潔能源利用的有效性依賴于其應用比例。二次氣粒轉化的化學過程形成的硝痠鹽、硫痠鹽和銨鹽對該地區空氣中PM2.5濃度的貢獻很大,鼕、春、鞦季硝痠鹽最大貢獻高達60%,夏、鞦季硫痠鹽最大貢獻超過70%,銨鹽四季最大貢獻約25%。這說明PM2.5的主要前體物NOx、SO2、NH3、VOCs (Volatile Organic Compounds)、CO等均大幅度削減纔能有效降低該地區空氣中PM2.5濃度。
침대경진기지구주요대기오염물NOx(담양화물)화PM2.5(대기중립경소우혹등우2.5μm적과립물),응용시유차미기정화기술급중소과로연기탈초기술,병근거2015년화2030년아국능원규화,설계3충기술응용정경,채용WRF-CAMx우합모식,대경진기지구대기중NOx화PM2.5진행료응용정경모의。결과표명,단독응용시유차미기정화기술후(방안1),북경、천진지구대기중적NOx농도강저폭도체20%,하북지구강저5%;PM2.5적농도강저폭도약10%;응용시유차미기정화기술화2015년능원규화정경(방안2),경진기지구대기중NOx화PM2.5농도적강저폭도균초과20%;응용시유차미기정화기술화2030년능원규화정경(방안3),해지구NOx농도강저폭도여지상당,PM2.5농도강저폭도초과30%。가견탈초기술화청길능원이용적유효성의뢰우기응용비례。이차기립전화적화학과정형성적초산염、류산염화안염대해지구공기중PM2.5농도적공헌흔대,동、춘、추계초산염최대공헌고체60%,하、추계류산염최대공헌초과70%,안염사계최대공헌약25%。저설명PM2.5적주요전체물NOx、SO2、NH3、VOCs (Volatile Organic Compounds)、CO등균대폭도삭감재능유효강저해지구공기중PM2.5농도。
Three scenarios were designed in which catalysts for selective catalytic reduction (SCR) of NOx were applied to diesel exhaust (Scenario 1), catalysts for SCR were applied to both diesel exhaust and natural gas boilers according to the Chinese energy plan for 2015 (Scenario 2), and the catalysts were applied as in Scenario 2 but the Chinese energy plan for 2030 was used (Scenario 3). Simulations were performed with the WRF-CAMx model in Beijing, Tianjin, and Hebei Province in China (the BTH region) for January, April, July, and October of 2007, representing winter, spring, summer, and autumn, respectively. The results indicate that Scenario 1 can reduce the surface NOx concentrations by 20% in Beijing and Tianjin and by 5%in Hebei Province, and decrease the PM2.5 (particulate matter with diameters less than or equal to 2.5μm) concentrations by 10%in the BTH region. Scenarios 2 and 3 lead to decreases of more than 20%and more than 30%, respectively, in the surface concentrations of NOx and PM2.5 over the BTH region. This suggests that decreases in the surface concentrations of NOx and PM2.5 depend significantly on the amount of the catalyst used for SCR in diesel exhaust and natural gas boilers over the BTH region. The chemical process plays a key role in the formation of nitrates, sulfates, and ammonium salts, which are major components of PM2.5 over the BTH region. The surface concentrations of nitrates, sulfates, and ammonium salts contribute more than 60%in winter, spring, and autumn, more than 70% in summer and autumn, and approximately 25% in all four seasons, respectively, to the surface PM2.5 concentration. This implies that a large reduction in the emissions of major precursors of PM2.5, e.g., NOx, SO2, NH3, volatile organic compounds, and CO, can effectively reduce surface concentrations of PM2.5.