煤田地质与勘探
煤田地質與勘探
매전지질여감탐
COAL GEOLOGY & EXPLORATION
2013年
4期
66-69
,共4页
徐东晶%施龙青%邱梅%景行%孙祺
徐東晶%施龍青%邱梅%景行%孫祺
서동정%시룡청%구매%경행%손기
BP神经网络%RBF神经网络%煤柱宽度预测%断层构造%Matlab软件
BP神經網絡%RBF神經網絡%煤柱寬度預測%斷層構造%Matlab軟件
BP신경망락%RBF신경망락%매주관도예측%단층구조%Matlab연건
BP neural networks%RBF neural networks%forecast of safety pillar%fault structure%Matlab software
在总结全国各典型煤矿断层防水煤柱相关资料的基础上,以水头压力、煤层厚度、安全系数、煤的抗张强度为主要影响因子,选择有代表性的样本数据,通过Matlab软件构建了BP和RBF神经网络模型,对各煤矿断层防水煤柱的留设宽度进行了预测,并与规程经验公式计算的结果进行了对比。结果显示,在煤矿断层防水煤柱留设宽度预测中,RBF 神经网络比 BP 神经网络的训练速度更快,效率更高,具有更加广阔的应用前景。
在總結全國各典型煤礦斷層防水煤柱相關資料的基礎上,以水頭壓力、煤層厚度、安全繫數、煤的抗張彊度為主要影響因子,選擇有代錶性的樣本數據,通過Matlab軟件構建瞭BP和RBF神經網絡模型,對各煤礦斷層防水煤柱的留設寬度進行瞭預測,併與規程經驗公式計算的結果進行瞭對比。結果顯示,在煤礦斷層防水煤柱留設寬度預測中,RBF 神經網絡比 BP 神經網絡的訓練速度更快,效率更高,具有更加廣闊的應用前景。
재총결전국각전형매광단층방수매주상관자료적기출상,이수두압력、매층후도、안전계수、매적항장강도위주요영향인자,선택유대표성적양본수거,통과Matlab연건구건료BP화RBF신경망락모형,대각매광단층방수매주적류설관도진행료예측,병여규정경험공식계산적결과진행료대비。결과현시,재매광단층방수매주류설관도예측중,RBF 신경망락비 BP 신경망락적훈련속도경쾌,효솔경고,구유경가엄활적응용전경。
On the basis of summing up the relevant information of the safety pillar against water-inrush from fault in typical coal mines throughout the country, taking head pressure, coal seam thickness, safe coefficient, coal ten-sile strength as the main influence factors, choosing the representative sample data, we built the BP and RBF neural network model through the Matlab software, with the model we forecasted the designed width of the water-proof coal pillar in each coal mine. Compared with the calculated results of procedure empirical formula, on the research of the design about water-proof pillar from coalfield, we found that it was faster for RBF neural networks in train-ing speed than the BP neural networks, furthermore, RBF is much more efficient than BP and can get broader ap-plication prospects.