中国空间科学技术
中國空間科學技術
중국공간과학기술
CHINESE SPACE SCIENCE AND TECHNOLOGY
2014年
2期
54-61
,共8页
汪大宝%王中果%汤海涛%曹京
汪大寶%王中果%湯海濤%曹京
왕대보%왕중과%탕해도%조경
定轨滤波%多速率模型%交互式多模型%遥感卫星%低地球轨道
定軌濾波%多速率模型%交互式多模型%遙感衛星%低地毬軌道
정궤려파%다속솔모형%교호식다모형%요감위성%저지구궤도
Orbit determination%Multi-rate tracking method%Interactive multi-model%Remote sensing%LEO
对低轨遥感卫星的精密定轨在理论上和实践上均有较高的技术难度,传统的定轨算法难以兼顾定轨精度和低运算复杂度的要求。为此,将交互式多模型算法(IMM)和多速率跟踪(MRT)技术引入卫星精密定轨技术研究,提出一种新定轨滤波算法。以IMM算法为框架,通过建立多模型集,降低对复杂动力学模型的建模误差,并根据各模型的线性化程度,综合选配粒子滤波算法和卡尔曼滤波算法,提高了滤波精度;同时,根据MRT思想,将原始观测信息压缩映射至模式空间,在模式空间实现低速率滤波,以降低算法的运算量。试验结果表明,算法较传统的卡尔曼滤波算法三轴定轨精度提高约47%,而运算速率较粒子滤波算法降低约40%;可见该算法在具有较低运算复杂度的基础上,具有较高的定轨精度,能够满足后续高分辨率遥感卫星对卫星定轨的要求。
對低軌遙感衛星的精密定軌在理論上和實踐上均有較高的技術難度,傳統的定軌算法難以兼顧定軌精度和低運算複雜度的要求。為此,將交互式多模型算法(IMM)和多速率跟蹤(MRT)技術引入衛星精密定軌技術研究,提齣一種新定軌濾波算法。以IMM算法為框架,通過建立多模型集,降低對複雜動力學模型的建模誤差,併根據各模型的線性化程度,綜閤選配粒子濾波算法和卡爾曼濾波算法,提高瞭濾波精度;同時,根據MRT思想,將原始觀測信息壓縮映射至模式空間,在模式空間實現低速率濾波,以降低算法的運算量。試驗結果錶明,算法較傳統的卡爾曼濾波算法三軸定軌精度提高約47%,而運算速率較粒子濾波算法降低約40%;可見該算法在具有較低運算複雜度的基礎上,具有較高的定軌精度,能夠滿足後續高分辨率遙感衛星對衛星定軌的要求。
대저궤요감위성적정밀정궤재이론상화실천상균유교고적기술난도,전통적정궤산법난이겸고정궤정도화저운산복잡도적요구。위차,장교호식다모형산법(IMM)화다속솔근종(MRT)기술인입위성정밀정궤기술연구,제출일충신정궤려파산법。이IMM산법위광가,통과건립다모형집,강저대복잡동역학모형적건모오차,병근거각모형적선성화정도,종합선배입자려파산법화잡이만려파산법,제고료려파정도;동시,근거MRT사상,장원시관측신식압축영사지모식공간,재모식공간실현저속솔려파,이강저산법적운산량。시험결과표명,산법교전통적잡이만려파산법삼축정궤정도제고약47%,이운산속솔교입자려파산법강저약40%;가견해산법재구유교저운산복잡도적기출상,구유교고적정궤정도,능구만족후속고분변솔요감위성대위성정궤적요구。
High precision orbit determination of LEO remote sensing satellites is difficult both in theory and practice .The traditional method can not meet the requirements of the orbit determination accuracy and low computational complexity . So , the interactive multi-model algorithm (IMM ) and multi-rate tracking (MRT ) method were introduced into the orbit determination .And a novel orbit determination algorithm was proposed based on IMM and MRT . Low kinematics model error was achieved by IMM algorithm . According to the linearization degree of the models , Kalman filter or particle filter was choose respectively to improve the filtering accuracy .Meanwhile ,original observation data was compressed in pattern space to reduce the computational complexity . The proposed algorithm is better than the traditional Kalman filter algorithm , and can improve the accuracy of about 47% . While the computational complexity reduces about 40% compared with particle filter algorithm . The results show that the proposed method can efficiently improve the orbit determination precision with low computational complexity compared with traditional algorithm . It can meet the requirements on orbit determination for the remote sensing satellites .