自动化与仪器仪表
自動化與儀器儀錶
자동화여의기의표
AUTOMATION & INSTRUMENTATION
2013年
6期
130-131
,共2页
龚骏%税爱社%李生林%陈扶明
龔駿%稅愛社%李生林%陳扶明
공준%세애사%리생림%진부명
数字化油库%输转作业%模式识别%人工神经网络
數字化油庫%輸轉作業%模式識彆%人工神經網絡
수자화유고%수전작업%모식식별%인공신경망락
Digital oil depot%Oil transportation%Pattern recognition%Artificial neural network
为准确识别数字化油库输转作业模式,在分析了油库典型输转作业模式基础上,提出了一种基于人工神经网络的输转作业模式识别方法。以阀门状态反馈信息作为网络输入,输转作业模式为输出构建立了神经网络结构,进而选取实际数据进行离线训练确定网络权值,最后通过仿真实验测试了该方法的识别效果,结果表明基于RBF神经网络的方法能快速、准确识别油库输转作业模式,对提高油库监控系统的智能化水平具有重要意义。
為準確識彆數字化油庫輸轉作業模式,在分析瞭油庫典型輸轉作業模式基礎上,提齣瞭一種基于人工神經網絡的輸轉作業模式識彆方法。以閥門狀態反饋信息作為網絡輸入,輸轉作業模式為輸齣構建立瞭神經網絡結構,進而選取實際數據進行離線訓練確定網絡權值,最後通過倣真實驗測試瞭該方法的識彆效果,結果錶明基于RBF神經網絡的方法能快速、準確識彆油庫輸轉作業模式,對提高油庫鑑控繫統的智能化水平具有重要意義。
위준학식별수자화유고수전작업모식,재분석료유고전형수전작업모식기출상,제출료일충기우인공신경망락적수전작업모식식별방법。이벌문상태반궤신식작위망락수입,수전작업모식위수출구건립료신경망락결구,진이선취실제수거진행리선훈련학정망락권치,최후통과방진실험측시료해방법적식별효과,결과표명기우RBF신경망락적방법능쾌속、준학식별유고수전작업모식,대제고유고감공계통적지능화수평구유중요의의。
In order to recognize oil transportation pattern correctly in digital oil depot, on the basis of analyzing typical oil trans-portation pattern a method is presented based on artificial neural network. Firstly this algorithm uses feedback of valves as input sig-nal and uses oil transportation pattern as the network output to establish a neural network. Then real data are chose for training the neural network parameters offline to get network weight. Lastly the recognition effectiveness was tested by simulation. The simula-tion experimental results show that the method based on RBF neural network can recognize operation pattern accurately and quickly. Study results are significant for system intelligence improvement in oil depot.