大连理工大学学报
大連理工大學學報
대련리공대학학보
JOURNAL OF DALIAN UNIVERSITY OF TECHNOLOGY
2013年
6期
924-929
,共6页
纳什均衡问题%广义纳什均衡问题%变分不等式%半光滑牛顿法
納什均衡問題%廣義納什均衡問題%變分不等式%半光滑牛頓法
납십균형문제%엄의납십균형문제%변분불등식%반광활우돈법
Nash equilibrium problem%generalized Nash equilibrium problem%variational inequality%semismooth New ton method
应用正则化Nikaido-Isoda函数,一类广义纳什均衡问题的求解被转化为一个极小极大问题的求解。利用Fischer-Burmeister函数将与极小极大问题的必要性条件等价的变分不等式的Karush-Kuhn-Tucker系统转化为一个半光滑方程组。应用牛顿法求解此方程组,并给出了半光滑牛顿法局部超线性收敛的充分条件。数值结果验证了极小极大方法对解决广义纳什均衡问题的有效性。
應用正則化Nikaido-Isoda函數,一類廣義納什均衡問題的求解被轉化為一箇極小極大問題的求解。利用Fischer-Burmeister函數將與極小極大問題的必要性條件等價的變分不等式的Karush-Kuhn-Tucker繫統轉化為一箇半光滑方程組。應用牛頓法求解此方程組,併給齣瞭半光滑牛頓法跼部超線性收斂的充分條件。數值結果驗證瞭極小極大方法對解決廣義納什均衡問題的有效性。
응용정칙화Nikaido-Isoda함수,일류엄의납십균형문제적구해피전화위일개겁소겁대문제적구해。이용Fischer-Burmeister함수장여겁소겁대문제적필요성조건등개적변분불등식적Karush-Kuhn-Tucker계통전화위일개반광활방정조。응용우돈법구해차방정조,병급출료반광활우돈법국부초선성수렴적충분조건。수치결과험증료겁소겁대방법대해결엄의납십균형문제적유효성。
Using the regularized Nikaido-Isoda function ,the generalized Nash equilibrium problem is reformulated as a minimax problem .Based on Fischer-Burmeister function ,the Karush-Kuhn-Tucker system of the variational inequality problem equivalent to the necessary conditions for this minimax problem ,is transformed into a semismooth system of equations .The semismooth Newton method is used to solve the system and sufficient conditions for the local superlinear convergence of the semismooth New ton method are derived . Numerical results show that the minimax approach to solving the generalized Nash equilibrium problem is practical .