大连理工大学学报
大連理工大學學報
대련리공대학학보
JOURNAL OF DALIAN UNIVERSITY OF TECHNOLOGY
2013年
6期
864-870
,共7页
薄壁空心墩%滞回性能%模拟%纤维有限单元模型%修正的压力场理论
薄壁空心墩%滯迴性能%模擬%纖維有限單元模型%脩正的壓力場理論
박벽공심돈%체회성능%모의%섬유유한단원모형%수정적압력장이론
thin walled hollow bridge piers%hysteretic behavior%simulation%fiber element model%modified compression field theory (MCFT )
建立了考虑弹塑性剪切变形的钢筋混凝土薄壁空心墩抗震滞回分析模型,模型中以修正的压力场理论(modified compression field theory ,MCFT )计算空心墩的剪切变形,并通过Ozcebe建议的滞回规则描述剪切滞回关系,以纤维单元模型模拟空心墩的弯曲变形,两者通过串联模型共同模拟试件在地震条件下的弯剪作用。利用建立的数值模型对1个矩形和3个圆形薄壁空心墩试件的滞回曲线进行了模拟分析。结果表明,不考虑剪切变形的纤维单元模型模拟的滞回曲线与试验结果有较大的误差,难以准确模拟滞回曲线的捏拢效应和耗能能力,并可能高估薄壁墩的刚度和残余位移,而建议的模型很好地模拟了薄壁墩的滞回性能。
建立瞭攷慮彈塑性剪切變形的鋼觔混凝土薄壁空心墩抗震滯迴分析模型,模型中以脩正的壓力場理論(modified compression field theory ,MCFT )計算空心墩的剪切變形,併通過Ozcebe建議的滯迴規則描述剪切滯迴關繫,以纖維單元模型模擬空心墩的彎麯變形,兩者通過串聯模型共同模擬試件在地震條件下的彎剪作用。利用建立的數值模型對1箇矩形和3箇圓形薄壁空心墩試件的滯迴麯線進行瞭模擬分析。結果錶明,不攷慮剪切變形的纖維單元模型模擬的滯迴麯線與試驗結果有較大的誤差,難以準確模擬滯迴麯線的捏攏效應和耗能能力,併可能高估薄壁墩的剛度和殘餘位移,而建議的模型很好地模擬瞭薄壁墩的滯迴性能。
건립료고필탄소성전절변형적강근혼응토박벽공심돈항진체회분석모형,모형중이수정적압력장이론(modified compression field theory ,MCFT )계산공심돈적전절변형,병통과Ozcebe건의적체회규칙묘술전절체회관계,이섬유단원모형모의공심돈적만곡변형,량자통과천련모형공동모의시건재지진조건하적만전작용。이용건립적수치모형대1개구형화3개원형박벽공심돈시건적체회곡선진행료모의분석。결과표명,불고필전절변형적섬유단원모형모의적체회곡선여시험결과유교대적오차,난이준학모의체회곡선적날롱효응화모능능력,병가능고고박벽돈적강도화잔여위이,이건의적모형흔호지모의료박벽돈적체회성능。
A new numerical model considering elasto-plastic shear deformation for RC thin-walled hollow bridge piers was proposed .In this model ,the shear force-shear displacement relationship of the pier was obtained by the modified compression field theory (MCFT ) and implemented in the hysteretic shear model proposed by Ozcebe ,while the flexural deformation was simulated by fiber element model .And then ,the MCFT and fiber element model were incorporated into a series model to account for the flexure-shear interaction of the piers under seismic effect .The hysteretic curves for one rectangular and three circular thin-walled hollow pier specimens were simulated and compared with experimental results . It is found that the fiber element model without considering shear deformation gives inadequate results and is incapable of predicting the pinching effect and energy dissipation capacity of the piers .Moreover ,the fiber element model would overestimate the lateral stiffness and residual displacement of the pier specimens .Comparisons between test and simulation results reveal the adequacy of the proposed numerical model .