计算机工程
計算機工程
계산궤공정
COMPUTER ENGINEERING
2013年
10期
232-235
,共4页
粒子滤波%在陑学习%随机蕨%目标跟踪%二维二值模式%巴氏距离
粒子濾波%在陑學習%隨機蕨%目標跟蹤%二維二值模式%巴氏距離
입자려파%재이학습%수궤궐%목표근종%이유이치모식%파씨거리
particle filtering%online learning%random ferns%object tracking%two dimensional binary pattern%Bhattacharyya distance
针对粒子滤波跟踪丢失目标后较难恢复的问题,提出一种基于粒子滤波和在陑学习的目标跟踪方法。使用粒子滤波有效的跟踪结果作为正训练样本不断更新样本库,将随机蕨作为分类器检测目标位置,当分类器和粒子滤波的检测结果存在较大差异时,重新初始化粒子滤波器。在陑学习采用二维二值特征,具有计算简单、尺度不变和光照不变的特点。实验结果证明,该方法的跟踪结果优于传统的粒子滤波,能够准确地跟踪到被遮挡和陭失再出现的目标。
針對粒子濾波跟蹤丟失目標後較難恢複的問題,提齣一種基于粒子濾波和在陑學習的目標跟蹤方法。使用粒子濾波有效的跟蹤結果作為正訓練樣本不斷更新樣本庫,將隨機蕨作為分類器檢測目標位置,噹分類器和粒子濾波的檢測結果存在較大差異時,重新初始化粒子濾波器。在陑學習採用二維二值特徵,具有計算簡單、呎度不變和光照不變的特點。實驗結果證明,該方法的跟蹤結果優于傳統的粒子濾波,能夠準確地跟蹤到被遮擋和陭失再齣現的目標。
침대입자려파근종주실목표후교난회복적문제,제출일충기우입자려파화재이학습적목표근종방법。사용입자려파유효적근종결과작위정훈련양본불단경신양본고,장수궤궐작위분류기검측목표위치,당분류기화입자려파적검측결과존재교대차이시,중신초시화입자려파기。재이학습채용이유이치특정,구유계산간단、척도불변화광조불변적특점。실험결과증명,해방법적근종결과우우전통적입자려파,능구준학지근종도피차당화기실재출현적목표。
For the problem that the tracker is hard to be resumed when particle filtering fails to track the target, this paper introduces a method that combines particle filtering with online learning. It uses the validated result of particle filtering as positive sample to update the training set. It uses random ferns as classifier to detect object. When there is a big difference between two results, the particle filter will be reinitialized. Two bit binary pattern is used as the online learning feature. It is easy to be computed, and has invariance to illumination and scale. Experimental result proves that this method has better tracking result than particle filtering and it can track the sheltered and disappeared target.