传感技术学报
傳感技術學報
전감기술학보
Journal of Transduction Technology
2013年
10期
1317-1322
,共6页
黄洁%李燕%尹芳缘%赵梦田%姜燕%沈凤%王绿野%惠国华%陈裕泉
黃潔%李燕%尹芳緣%趙夢田%薑燕%瀋鳳%王綠野%惠國華%陳裕泉
황길%리연%윤방연%조몽전%강연%침봉%왕록야%혜국화%진유천
低温贮藏罗非鱼%储存时间%电子鼻%随机共振%信噪比
低溫貯藏囉非魚%儲存時間%電子鼻%隨機共振%信譟比
저온저장라비어%저존시간%전자비%수궤공진%신조비
chilled-stored tilapia%storage time%electronic nose%stochastic resonance%signal-to-noise ratio
采用电子鼻结合理化检验方法建立了一种预测低温贮藏罗非鱼储存时间的新方法。依据国家标准检验了罗非鱼样品低温储存过程中的pH值和挥发性盐基氮( TVBN)指标的变化,同时测量了电子鼻响应。采用主成分分析和非线性随机共振分析电子鼻检测数据,对比主成分分析结果,随机共振输出信噪比可以定性和定量的区分罗非鱼样品。依据TVBN国家标准计算得到罗非鱼电子鼻检测信噪比新鲜度阈值为-61.1688 dB。选取信噪比曲线特征值经线性拟合回归建立了罗非鱼储存时间预测模型,该模型的预测系数R2=0.910,验证实验结果表明可以准确预测罗非鱼的储存时间。该方法有望于在水产品品质快速分析中得到应用。
採用電子鼻結閤理化檢驗方法建立瞭一種預測低溫貯藏囉非魚儲存時間的新方法。依據國傢標準檢驗瞭囉非魚樣品低溫儲存過程中的pH值和揮髮性鹽基氮( TVBN)指標的變化,同時測量瞭電子鼻響應。採用主成分分析和非線性隨機共振分析電子鼻檢測數據,對比主成分分析結果,隨機共振輸齣信譟比可以定性和定量的區分囉非魚樣品。依據TVBN國傢標準計算得到囉非魚電子鼻檢測信譟比新鮮度閾值為-61.1688 dB。選取信譟比麯線特徵值經線性擬閤迴歸建立瞭囉非魚儲存時間預測模型,該模型的預測繫數R2=0.910,驗證實驗結果錶明可以準確預測囉非魚的儲存時間。該方法有望于在水產品品質快速分析中得到應用。
채용전자비결합이화검험방법건립료일충예측저온저장라비어저존시간적신방법。의거국가표준검험료라비어양품저온저존과정중적pH치화휘발성염기담( TVBN)지표적변화,동시측량료전자비향응。채용주성분분석화비선성수궤공진분석전자비검측수거,대비주성분분석결과,수궤공진수출신조비가이정성화정량적구분라비어양품。의거TVBN국가표준계산득도라비어전자비검측신조비신선도역치위-61.1688 dB。선취신조비곡선특정치경선성의합회귀건립료라비어저존시간예측모형,해모형적예측계수R2=0.910,험증실험결과표명가이준학예측라비어적저존시간。해방법유망우재수산품품질쾌속분석중득도응용。
The method for storage time prediction of chilled-stored tilapia was explored by electronic nose combined with physical and chemical examination. According to national standard,pH and total volatile base nitrogen( TVBN) was examined. Electronic nose responses to the samples were measured. Principal component analysis(PCA)and stochastic resonance( SR) analysis were conducted on electronic nose measurement data. Compared with PCA result, SR output signal-to-noise ratio( SNR) discriminated storage time of tilapia samples qualitatively and quantitatively. Tilapia freshness threshold is -61. 168 8 dB according to TVBN national standard. Tilapia storage time predicting model was developed using SR SNR eigen value linear fitting regression. The predicting coefficient was R2=0. 910. Validating experiment results demonstrated that this model presented good predicting accuracy. This method is promising in aquatic product quality analysis applications.