空气动力学学报
空氣動力學學報
공기동역학학보
ACTA AERODYNAMICA SINICA
2014年
3期
273-279
,共7页
直接数值模拟%可压缩混合层%涡结构%混合%湍流
直接數值模擬%可壓縮混閤層%渦結構%混閤%湍流
직접수치모의%가압축혼합층%와결구%혼합%단류
DNS%compressible mixing layer%structure%mixing%turbulence
为研究可压缩混合层的流动结构,采用七阶精度广义紧致格式离散对流项和用显式八阶精度的中心格式离散粘性项,数值求解了非定常三维可压缩 Navier-Stokes 方程。用约4亿规模的网格,直接数值模拟了对流马赫数为0.7的超声速可压缩混合层的空间发展流动,获得了自初始流动失稳直至充分发展湍流流动结构的精细演化历程,所得结果表明:大尺度涡结构的生成使得混合层的动量厚度快速增长,并主宰了由被动标量质量分数展示的可视混合厚度的量级,充分发展湍流的小尺度的结构主要使得该量级厚度内的流质混合趋于均匀,对可视厚度增长的贡献非常有限。
為研究可壓縮混閤層的流動結構,採用七階精度廣義緊緻格式離散對流項和用顯式八階精度的中心格式離散粘性項,數值求解瞭非定常三維可壓縮 Navier-Stokes 方程。用約4億規模的網格,直接數值模擬瞭對流馬赫數為0.7的超聲速可壓縮混閤層的空間髮展流動,穫得瞭自初始流動失穩直至充分髮展湍流流動結構的精細縯化歷程,所得結果錶明:大呎度渦結構的生成使得混閤層的動量厚度快速增長,併主宰瞭由被動標量質量分數展示的可視混閤厚度的量級,充分髮展湍流的小呎度的結構主要使得該量級厚度內的流質混閤趨于均勻,對可視厚度增長的貢獻非常有限。
위연구가압축혼합층적류동결구,채용칠계정도엄의긴치격식리산대류항화용현식팔계정도적중심격식리산점성항,수치구해료비정상삼유가압축 Navier-Stokes 방정。용약4억규모적망격,직접수치모의료대류마혁수위0.7적초성속가압축혼합층적공간발전류동,획득료자초시류동실은직지충분발전단류류동결구적정세연화역정,소득결과표명:대척도와결구적생성사득혼합층적동량후도쾌속증장,병주재료유피동표량질량분수전시적가시혼합후도적량급,충분발전단류적소척도적결구주요사득해량급후도내적류질혼합추우균균,대가시후도증장적공헌비상유한。
Using the seventh-order upwind compact scheme for spatial discretization of the convective flux,the explicit central eighth-order scheme for viscous flux terms,the unsteady three-dimensional com-pressible Navier-Stokes equations are solved for the compressible spatially evolving plane mixing layer.The direct numerical simulation (DNS)is performed without resorting to any sub-grid models.The convective Mach number of the mixing layer is chosen to be 0.7 for characterizing the moderate compressibility.The fi-nite difference grid size is 4160×351×256.The spatial developing structures are shown in detail from the in-itial instability flow until the full development of turbulent flow.The results show that the large-scale vortex structures,such as Λ vortices,hairpin vortices and flower structures,make the momentum thickness grow rapidly along the streamwise flow.The discussions are focused on the capacity of the moderate compressible shear layer to mix the fluids from the two different sides.It is found that the large-scale vortex structures significantly affect the thickness of the visual layer thickness shown by the mass fraction of the passive sca-lar.Particularly,strong pumping flows between the two counter-rotating vortices of Λ vortices as well as hairpin vortices injects large amounts of fluid from one side to the other side.The small vortices contained in the flower structures also help mix the fluids through their energetic twisting motion,only at a relatively small scale.Generally speaking,the dynamic evolution of these large-scale vortex structures produces very curvy interfaces between the upper side and the lower side,and the large contact area of the curvy interfaces appreciably enhances the mixing between the fluids from the two sides.The fine scale structures in the fully developed turbulence play an important role in making the mixing of the shear layer more uniform.However the contribution of the fully developed turbulence to the visual mixing layer growth is very limited.