实验流体力学
實驗流體力學
실험류체역학
JOURNAL OF EXPERIMENTS IN FLUID MECHANICS
2014年
4期
70-77
,共8页
王晓宇%张超%孙维%裘进浩%臧晓云
王曉宇%張超%孫維%裘進浩%臧曉雲
왕효우%장초%손유%구진호%장효운
航天器密封结构%空间碎片%撞击监测
航天器密封結構%空間碎片%撞擊鑑測
항천기밀봉결구%공간쇄편%당격감측
spacecraft sealed structure%space debris%impact location monitoring
航天器密封结构在轨长期运行期间会受到空间碎片撞击,使密封结构出现不同程度的损伤。如果这些损伤不能被及时检测出来并采取相应措施,可能会带来灾难性的后果。对碎片撞击进行监测可以为航天员采用正确修复方案提供依据。本文利用基于超声导波的结构健康监测技术感知空间碎片对航天器密封结构的撞击。首先,在 Abaqus 有限元仿真软件中,用不同速度的钢球冲击模拟真实的冲击形式。具体分析了超声导波在该壁板结构中的传播特性。用小波变换的方法进行信号处理,据此提取了合适的冲击监测所需的信号频率。其次,设计了一种基于信号互相关分析的冲击成像算法确定撞击位置。比较了不同压电传感器网络定位准确度以及监测效率,选择了一种可靠的组网形式进行监测。最后针对航天器壁板,在实验室环境中验证了该算法的有效性。实验结果表明,该监测系统具有良好的准确性与可靠性。
航天器密封結構在軌長期運行期間會受到空間碎片撞擊,使密封結構齣現不同程度的損傷。如果這些損傷不能被及時檢測齣來併採取相應措施,可能會帶來災難性的後果。對碎片撞擊進行鑑測可以為航天員採用正確脩複方案提供依據。本文利用基于超聲導波的結構健康鑑測技術感知空間碎片對航天器密封結構的撞擊。首先,在 Abaqus 有限元倣真軟件中,用不同速度的鋼毬遲擊模擬真實的遲擊形式。具體分析瞭超聲導波在該壁闆結構中的傳播特性。用小波變換的方法進行信號處理,據此提取瞭閤適的遲擊鑑測所需的信號頻率。其次,設計瞭一種基于信號互相關分析的遲擊成像算法確定撞擊位置。比較瞭不同壓電傳感器網絡定位準確度以及鑑測效率,選擇瞭一種可靠的組網形式進行鑑測。最後針對航天器壁闆,在實驗室環境中驗證瞭該算法的有效性。實驗結果錶明,該鑑測繫統具有良好的準確性與可靠性。
항천기밀봉결구재궤장기운행기간회수도공간쇄편당격,사밀봉결구출현불동정도적손상。여과저사손상불능피급시검측출래병채취상응조시,가능회대래재난성적후과。대쇄편당격진행감측가이위항천원채용정학수복방안제공의거。본문이용기우초성도파적결구건강감측기술감지공간쇄편대항천기밀봉결구적당격。수선,재 Abaqus 유한원방진연건중,용불동속도적강구충격모의진실적충격형식。구체분석료초성도파재해벽판결구중적전파특성。용소파변환적방법진행신호처리,거차제취료합괄적충격감측소수적신호빈솔。기차,설계료일충기우신호호상관분석적충격성상산법학정당격위치。비교료불동압전전감기망락정위준학도이급감측효솔,선택료일충가고적조망형식진행감측。최후침대항천기벽판,재실험실배경중험증료해산법적유효성。실험결과표명,해감측계통구유량호적준학성여가고성。
During long-term work,the spacecraft seal structure suffers impacts from the space debris.If the damage can not be detected immediately,disastrous consequences will happen. Therefore the detection of the impacts caused by space debris is essential and meaningful.This work focuses on an ultrasonic guided wave structural health monitoring (SHM)system developed for the spacecraft seal structure inspection.In part one of the study,the Finite Element Modeling of the reinforced panel is created using the finite element software ABAQUS.Then the simula-tion of the impact made by a small iron ball is presented,and the velocity of the ball increases from 500m/s to 10000m/s.Besides,the elastic wave propagation in the panel is also discussed, and the elastic wave propagation characteristics in the stiffened panel are analyzed.The wavelet transform method is used to find out the appropriate analysis frequency of the elastic waves.The conclusion is that the signal components in 50kHz is the optimal selection to detect and locate the iron ball impact.In part two,permanently mounted ultrasonic piezoelectric (PZT)disc sensors arranged as a spatially distributed array is considered for in situ impact monitoring.The impact location and imaging algorithm is based upon the cross correlation between waveforms received by two different transducers.The cross correlation waveforms,which capture the arrival time difference between two pairs,are similarly distributed and summed to form the final image via a hyperbolic relationship.In order to find out the optimal solution among the sensor number,the accuracy of the impact location and the time-consuming,several different arrangements of the sensors are presented.A comparison based on location accuracy in central region,border area and computing time-consuming is made to find out the optimal sensor arrangement in the reinforced panel.In part three,the effects of the algorithm and the sensor arrangement are tested in a labo-ratory environment.Hammer percussion is used as a substitute for the iron ball impact in these tests.As many as 20 repeated hammer shocks are made for each selected point in the stiffened panel.The results verify the accuracy and stability of the algorithm for impact detection and lo-calization in the complex spacecraft structure.