西安工业大学学报
西安工業大學學報
서안공업대학학보
JOURNAL OF XI'AN TECHNOLOGICAL UNIVERSITY
2014年
4期
280-286,310
,共8页
非线性振动%伽辽金离散法%主振型%周期轨道
非線性振動%伽遼金離散法%主振型%週期軌道
비선성진동%가료금리산법%주진형%주기궤도
nonlinear vibration%Galerkin discrete method%principal mode%periodic orbit
为解决屈曲梁在不同的激励条件下产生共振问题,基于哈密顿原理建立屈曲梁的振动模型以及非线性偏微分振动方程和边界条件,通过数值模拟分析了屈曲梁在相平面的动态特性。采用多模态伽辽金离散法预测静态弯曲参数,通过局部分析获得某一个弯曲附近处的非线性近似响应,并得出有效的非线性表达式和频率响应曲线。
為解決屈麯樑在不同的激勵條件下產生共振問題,基于哈密頓原理建立屈麯樑的振動模型以及非線性偏微分振動方程和邊界條件,通過數值模擬分析瞭屈麯樑在相平麵的動態特性。採用多模態伽遼金離散法預測靜態彎麯參數,通過跼部分析穫得某一箇彎麯附近處的非線性近似響應,併得齣有效的非線性錶達式和頻率響應麯線。
위해결굴곡량재불동적격려조건하산생공진문제,기우합밀돈원리건립굴곡량적진동모형이급비선성편미분진동방정화변계조건,통과수치모의분석료굴곡량재상평면적동태특성。채용다모태가료금리산법예측정태만곡삼수,통과국부분석획득모일개만곡부근처적비선성근사향응,병득출유효적비선성표체식화빈솔향응곡선。
T he nonlinear response phenomena of buckling beam ,w hich is clamped at one end and sliding at the other end to a harmonic axial excitation ,are studied .A vibration model of buckling beam and nonlinear partial differential equations and boundary conditions are established .T he static bending parameters are predicted by using multi-mode Galerkin method .The nonlinear approximative response is obtained in the vicinity of a certain beam bending through local analysis ,and the curve of frequency response and the effective nonlinear expressions are got .Through the numerical simulation ,the dynamic characteristics of buckling beam are analyzed in phase plane .For the nonlinear vibration system ,the result is much closer to the actual result of multi-mode vibration .This helps to understand the actual beam structure vibration in the working process ,and to determine the cause of structural vibration , reso nance f requency .