计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2013年
22期
115-118,122
,共5页
钱雪忠%李静%宋威
錢雪忠%李靜%宋威
전설충%리정%송위
模糊聚类%模糊C-均值聚类算法%粒子群优化算法%紧凑性%分离性
模糊聚類%模糊C-均值聚類算法%粒子群優化算法%緊湊性%分離性
모호취류%모호C-균치취류산법%입자군우화산법%긴주성%분리성
fuzzy clustering%Fuzzy C-means(FCM)%Particle Swarm Optimization(PSO)%compactness%separation
针对传统的模糊C-均值聚类算法对初始聚类中心较敏感、易陷入局部最优的缺点,将粒子群优化算法和FCM算法相结合,提出一种改进的模糊聚类算法。该算法利用粒子群算法的全局搜索能力代替FCM算法寻找初始聚类中心,使其跳出局部最优,实现模糊聚类。主要从反映数据集分类的类内紧致性程度和类间分离性程度的角度考虑,重新设计适应度函数。实验结果表明,提出的算法在聚类正确率和有效性指标上有更好的效果。
針對傳統的模糊C-均值聚類算法對初始聚類中心較敏感、易陷入跼部最優的缺點,將粒子群優化算法和FCM算法相結閤,提齣一種改進的模糊聚類算法。該算法利用粒子群算法的全跼搜索能力代替FCM算法尋找初始聚類中心,使其跳齣跼部最優,實現模糊聚類。主要從反映數據集分類的類內緊緻性程度和類間分離性程度的角度攷慮,重新設計適應度函數。實驗結果錶明,提齣的算法在聚類正確率和有效性指標上有更好的效果。
침대전통적모호C-균치취류산법대초시취류중심교민감、역함입국부최우적결점,장입자군우화산법화FCM산법상결합,제출일충개진적모호취류산법。해산법이용입자군산법적전국수색능력대체FCM산법심조초시취류중심,사기도출국부최우,실현모호취류。주요종반영수거집분류적류내긴치성정도화류간분리성정도적각도고필,중신설계괄응도함수。실험결과표명,제출적산법재취류정학솔화유효성지표상유경호적효과。
Aiming at the problem of traditional fuzzy C-means clustering algorithm that it is sensitive to the initial clustering centers and easy to fall into the local optimization, an improved algorithm that combines Particle Swarm Optimization algorithm with FCM algorithm is proposed. Depending on utilizing the global searching ability of Particle Swarm Optimization algorithm instead of the FCM algorithm, the new algorithm searches the initial cluster centers and escapes from the local optimization so as to achieve fuzzy clustering at last. Meanwhile, it mainly redesigns the fitness function from the perspective of compactness in intra-class and separation in inter-class. The experimental results show that the proposed algorithm has a better effect on both the cluster validity indexes and clustering accuracy.