电力系统保护与控制
電力繫統保護與控製
전력계통보호여공제
POWER SYSTM PROTECTION AND CONTROL
2013年
22期
38-45
,共8页
同杆四回线%故障选相%双同相量%双反相量%故障边界条件
同桿四迴線%故障選相%雙同相量%雙反相量%故障邊界條件
동간사회선%고장선상%쌍동상량%쌍반상량%고장변계조건
four-circuit transmission lines on the same tower%fault phase selection%four-summing phasor%double-differential phasor%fault boundary condition
为了解决同杆四回线故障情况复杂,跨线故障时无法应用单回线故障选相方法的难题,提出了一种基于故障电流双反相量的同杆四回线故障选相方法。同杆四回线发生一回线内或两回线间跨线故障时,对四回线各相电流进行变换,可得故障相电流的双同及双反相量。通过对故障电流边界条件的分析可知,不同类型故障时故障电流的3个双反相量分别具有不同的幅值和相位特点。以此为基础,提出了在一回线内故障和两回线间跨线故障时能够准确识别故障回线和故障相的同杆四回线故障选相方法。仿真表明本方法在不同的负载电流、过渡电阻、故障位置及故障类型下均能进行有效的故障选相。
為瞭解決同桿四迴線故障情況複雜,跨線故障時無法應用單迴線故障選相方法的難題,提齣瞭一種基于故障電流雙反相量的同桿四迴線故障選相方法。同桿四迴線髮生一迴線內或兩迴線間跨線故障時,對四迴線各相電流進行變換,可得故障相電流的雙同及雙反相量。通過對故障電流邊界條件的分析可知,不同類型故障時故障電流的3箇雙反相量分彆具有不同的幅值和相位特點。以此為基礎,提齣瞭在一迴線內故障和兩迴線間跨線故障時能夠準確識彆故障迴線和故障相的同桿四迴線故障選相方法。倣真錶明本方法在不同的負載電流、過渡電阻、故障位置及故障類型下均能進行有效的故障選相。
위료해결동간사회선고장정황복잡,과선고장시무법응용단회선고장선상방법적난제,제출료일충기우고장전류쌍반상량적동간사회선고장선상방법。동간사회선발생일회선내혹량회선간과선고장시,대사회선각상전류진행변환,가득고장상전류적쌍동급쌍반상량。통과대고장전류변계조건적분석가지,불동류형고장시고장전류적3개쌍반상량분별구유불동적폭치화상위특점。이차위기출,제출료재일회선내고장화량회선간과선고장시능구준학식별고장회선화고장상적동간사회선고장선상방법。방진표명본방법재불동적부재전류、과도전조、고장위치급고장류형하균능진행유효적고장선상。
The fault in four-circuit transmission lines is complex, and fault phase detection algorithm of single circuit line can not be used for cross line faults. Aiming at this problem, a method for fault phase selection of four-circuit transmission lines on the same tower is presented based on double-differential phasors of fault currents. Four-summing and double-differential phasors of fault currents can be calculated using a certain transformation matrix for line-line parameter decoupling of four circuit lines. According to fault boundary conditions, the amplitude and phase of three double-differential phasors of fault currents are studied under conditions of different types of faults. Based on this, a novel methodology for fault phase detection for four-circuit transmission lines on the same tower is put forward, which can pick out the fault phases no matter the fault occurs in single line or cross double lines. Simulation results validate that the methodology is correct and reliable under different conditions of load currents, transient resistances, fault point locations and fault types.