岩土力学
巖土力學
암토역학
ROCK AND SOIL MECHANICS
2013年
z2期
311-317
,共7页
杨栋%李海波%夏祥%罗超文%李卫兵
楊棟%李海波%夏祥%囉超文%李衛兵
양동%리해파%하상%라초문%리위병
岩石力学%围岩损伤%爆破%高地应力
巖石力學%圍巖損傷%爆破%高地應力
암석역학%위암손상%폭파%고지응력
rock mechanics%surrounding rock damage%blast%high in-situ stress
为预估和控制爆破荷载作用下围岩损伤范围,在赣龙铁路梅花山隧道工程现场进行岩体声波测试,得到围岩的损伤范围。根据爆破荷载作用下岩体损伤发展规律,采用基于概率形式的损伤变量定义,运用三维有限差分软件对不同地应力状态下爆破产生的围岩损伤范围进行数值模拟,并与现场岩体声波测试结果进行比较。计算结果表明,数值计算与实测结果有较好的一致性,随着地应力大小增大,围岩损伤范围呈现先减小后增大的趋势,且增大幅度较大,地应力较高时,局部部位如顶板、底板损伤更为明显,说明地应力大小对围岩损伤分布有着显著影响;随着侧压力系数增大,损伤范围先减小后增大,但增速逐渐减小。所得到的结论可为高地应力下隧道稳定性分析和支护设计提供依据。
為預估和控製爆破荷載作用下圍巖損傷範圍,在贛龍鐵路梅花山隧道工程現場進行巖體聲波測試,得到圍巖的損傷範圍。根據爆破荷載作用下巖體損傷髮展規律,採用基于概率形式的損傷變量定義,運用三維有限差分軟件對不同地應力狀態下爆破產生的圍巖損傷範圍進行數值模擬,併與現場巖體聲波測試結果進行比較。計算結果錶明,數值計算與實測結果有較好的一緻性,隨著地應力大小增大,圍巖損傷範圍呈現先減小後增大的趨勢,且增大幅度較大,地應力較高時,跼部部位如頂闆、底闆損傷更為明顯,說明地應力大小對圍巖損傷分佈有著顯著影響;隨著側壓力繫數增大,損傷範圍先減小後增大,但增速逐漸減小。所得到的結論可為高地應力下隧道穩定性分析和支護設計提供依據。
위예고화공제폭파하재작용하위암손상범위,재공룡철로매화산수도공정현장진행암체성파측시,득도위암적손상범위。근거폭파하재작용하암체손상발전규률,채용기우개솔형식적손상변량정의,운용삼유유한차분연건대불동지응력상태하폭파산생적위암손상범위진행수치모의,병여현장암체성파측시결과진행비교。계산결과표명,수치계산여실측결과유교호적일치성,수착지응력대소증대,위암손상범위정현선감소후증대적추세,차증대폭도교대,지응력교고시,국부부위여정판、저판손상경위명현,설명지응력대소대위암손상분포유착현저영향;수착측압력계수증대,손상범위선감소후증대,단증속축점감소。소득도적결론가위고지응력하수도은정성분석화지호설계제공의거。
In order to forecast and control the damage zone of surrounding rock under blasting load, sound wave tests have been conducted in the construction site of Meihuashan Tunnel in Jiangxi province dragon railway. Based on the change rate of sound wave speed, damage zone size of surrounding rock are obtained. On this basis, a statistics-based damage variable of rockmass has been proposed based on micromechanics. Damage zone size of surrounding rock under blasting load at different in-situ stresses is thus studied by using three-dimensional finite difference software. Calculations show that the numerical simulation results agree well with the site monitoring results. With the in-situ stress increasing, the size of damage zone decreases first, then increases, and increases by a large margin;when the in-situ stress is high, local parts such as tunnel roof, floor damage is more obvious; it is shown that the in-situ stress has significant impact on surrounding rock damage distribution. With the lateral pressure coefficient increasing, the size of damage zone decreases first, then increases, but the growth rate decreases. The results provide foundation for stability analysis of tunnels under high in-situ stress and supporting design of the cracked surrounding rock.