岩土力学
巖土力學
암토역학
ROCK AND SOIL MECHANICS
2013年
z2期
291-298
,共8页
范思遐%周奇才%熊肖磊%赵炯
範思遐%週奇纔%熊肖磊%趙炯
범사하%주기재%웅초뢰%조형
隧道沉降%支持向量机%自适应多核%预测
隧道沉降%支持嚮量機%自適應多覈%預測
수도침강%지지향량궤%자괄응다핵%예측
tunnel settlement%support vector machine%adaptive multiply kernels%prediction
为提高支持向量机的预测精度,提出一种基于自适应多核学习模型的预测方法。自适应多核学习算法中采用树形筛选结构,通过生枝、剪枝操作完成核函数间的相加、相乘处理,增强了多核函数的非线性与多样性。采用网格遍历和粒子群算法对核参数、权重系数及模型参数进行寻优处理,弥补了训练样本缺少先验知识对参数赋值产生的偏差。将多核学习方法用于地铁隧道沉降预测,并与单核函数的预测数值进行对比。试验结果表明,自适应多核学习模型有效提高了预测模型的预测精度及泛化性能。
為提高支持嚮量機的預測精度,提齣一種基于自適應多覈學習模型的預測方法。自適應多覈學習算法中採用樹形篩選結構,通過生枝、剪枝操作完成覈函數間的相加、相乘處理,增彊瞭多覈函數的非線性與多樣性。採用網格遍歷和粒子群算法對覈參數、權重繫數及模型參數進行尋優處理,瀰補瞭訓練樣本缺少先驗知識對參數賦值產生的偏差。將多覈學習方法用于地鐵隧道沉降預測,併與單覈函數的預測數值進行對比。試驗結果錶明,自適應多覈學習模型有效提高瞭預測模型的預測精度及汎化性能。
위제고지지향량궤적예측정도,제출일충기우자괄응다핵학습모형적예측방법。자괄응다핵학습산법중채용수형사선결구,통과생지、전지조작완성핵함수간적상가、상승처리,증강료다핵함수적비선성여다양성。채용망격편력화입자군산법대핵삼수、권중계수급모형삼수진행심우처리,미보료훈련양본결소선험지식대삼수부치산생적편차。장다핵학습방법용우지철수도침강예측,병여단핵함수적예측수치진행대비。시험결과표명,자괄응다핵학습모형유효제고료예측모형적예측정도급범화성능。
To improve the prediction precise of support vector machine model, an adaptive multiple kernels learning (AMKL) method is proposed. In this method, a tree structure is used to screen the kernels. Additionally, this processing can be implemented with growing and cutting branches manipulation for adding and multiplying the kernels in each layer. This would enhance the nonlinear and diversity characteristics of multi-kernels. Grid traversal and particle swarm optimization method are applied to solve the optimization problem of kernel parameters, weight coefficient and model parameters. It could offset the assignment deviation of parameters which occurs in the lack of a prior knowledge of the training samples. AMKL method is used to predict the settlement of metro tunnel. Comparisons between experimental results of AMKL and the ones of single kernel functions show that AMKL effectively improves the accuracy and generalization.