岩土力学
巖土力學
암토역학
ROCK AND SOIL MECHANICS
2013年
z2期
57-61
,共5页
贾长贵%陈军海%郭印同%杨春和%徐敬宾%王磊
賈長貴%陳軍海%郭印同%楊春和%徐敬賓%王磊
가장귀%진군해%곽인동%양춘화%서경빈%왕뢰
层状页岩%层理面%力学特性%破坏模式
層狀頁巖%層理麵%力學特性%破壞模式
층상혈암%층리면%역학특성%파배모식
layer shale%bed plane%mechanical characteristics%failure mode
采用MTS815型岩石力学试验机进行了页岩层理面不同角度取芯的力学试验,获得了其力学参数及破坏模式特征。试验表明:层理面不同角度试样力学性质存在较大差异性,平行层理面试样其抗压强度最高,与层理面夹角为30°时抗压强度最低,弹性模量随取芯角度的增加逐渐降低。单轴压缩,夹角为0°时破坏模式主要为沿多个平行层理面竖向劈裂,夹角为30°时沿层理弱面剪切破坏,夹角为60°时为大角度剪切破坏并贯穿60°弱层理面,夹角为90°时主要为层状拉张破坏。三轴压缩,夹角为0°时试样有多条破裂面,呈劈裂与剪切破坏共同作用;夹角为30°时,沿层理面剪切破坏;夹角为60°时,呈现剪切破坏,剪切破裂面与水平面夹角在45°~50°之间;夹角为90°时,以剪切破坏为主,有多条平行开裂层面。页岩层理面表现出明显的弱面特征,研究结果为水力压裂施工设计提供了技术参数。
採用MTS815型巖石力學試驗機進行瞭頁巖層理麵不同角度取芯的力學試驗,穫得瞭其力學參數及破壞模式特徵。試驗錶明:層理麵不同角度試樣力學性質存在較大差異性,平行層理麵試樣其抗壓彊度最高,與層理麵夾角為30°時抗壓彊度最低,彈性模量隨取芯角度的增加逐漸降低。單軸壓縮,夾角為0°時破壞模式主要為沿多箇平行層理麵豎嚮劈裂,夾角為30°時沿層理弱麵剪切破壞,夾角為60°時為大角度剪切破壞併貫穿60°弱層理麵,夾角為90°時主要為層狀拉張破壞。三軸壓縮,夾角為0°時試樣有多條破裂麵,呈劈裂與剪切破壞共同作用;夾角為30°時,沿層理麵剪切破壞;夾角為60°時,呈現剪切破壞,剪切破裂麵與水平麵夾角在45°~50°之間;夾角為90°時,以剪切破壞為主,有多條平行開裂層麵。頁巖層理麵錶現齣明顯的弱麵特徵,研究結果為水力壓裂施工設計提供瞭技術參數。
채용MTS815형암석역학시험궤진행료혈암층리면불동각도취심적역학시험,획득료기역학삼수급파배모식특정。시험표명:층리면불동각도시양역학성질존재교대차이성,평행층리면시양기항압강도최고,여층리면협각위30°시항압강도최저,탄성모량수취심각도적증가축점강저。단축압축,협각위0°시파배모식주요위연다개평행층리면수향벽렬,협각위30°시연층리약면전절파배,협각위60°시위대각도전절파배병관천60°약층리면,협각위90°시주요위층상랍장파배。삼축압축,협각위0°시시양유다조파렬면,정벽렬여전절파배공동작용;협각위30°시,연층리면전절파배;협각위60°시,정현전절파배,전절파렬면여수평면협각재45°~50°지간;협각위90°시,이전절파배위주,유다조평행개렬층면。혈암층리면표현출명현적약면특정,연구결과위수력압렬시공설계제공료기술삼수。
The mechanical characteristics of shale with different beddings coring were investigated by MTS815 rock mechanical test system. The failure modes,deformation and strength characteristics are obtained. The results indicate that:(1) It shows significantly different properties, when the sample paralleled to bedding plane;it has maximum value of compressive strength and minimum value when the sample has a angle of 30° with bedding plane. The elastic modulus deceases with the increase of the coring angle. (2) Under the condition of uniaxial compression, the angle of 0°, the main failure mode is split failure along the beddings;the angle of 30°, it is shear failure along the weakness plane, the angle of 60°, it is wide-angle shear failure along the weakness plane;the angle of 90°, it is stretch-draw failure. (3) Under the condition of triaxial compression, angle of 0°, it shows several failure surfaces, combined split and shear failure actions;the angle of 30°,it shows shear failure along to the beddings;the angle of 60°, it shows shear failure and the angle of failure surface is 45° to 50°;the angle of 90°, it shows shear failure and it has several parallel failure surfaces. The results can provide an important way for fracture optimization design.